【深度学习笔记3.1 正则化】权重衰减(weight decay)

2024-06-06 05:58

本文主要是介绍【深度学习笔记3.1 正则化】权重衰减(weight decay),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

权重衰减是什么?参考有关文献

这里参考文献[1]整理成如下代码:(详见文献[5]regularization/WeightDecay.py)

import numpy as np
import tensorflow as tffrom matplotlib import pyplot as pltn_train = 20
n_test = 100
num_inputs = 200true_w = np.ones((num_inputs, 1)) * 0.01
true_b = 0.05
features = np.random.normal(size=(n_train+n_test, num_inputs))
np.random.shuffle(features)
labels = np.dot(features, true_w) + true_b
labels += np.random.normal(scale=0.01, size=labels.shape)train_features, test_features = features[:n_train], features[n_train:]
train_labels, test_labels = labels[:n_train], labels[n_train:]batch_size = 1
epochs = 100
learning_rate = 0.003
lambd = 5x = tf.placeholder(tf.float32, shape=(None, num_inputs))
y = tf.placeholder(tf.float32, shape=(None, 1))w = tf.Variable(tf.random_normal((num_inputs, 1)))
b = tf.Variable(tf.zeros(1))
y_hat = tf.add(tf.matmul(x, w), b)loss = tf.reduce_mean(tf.square(y-y_hat)) + lambd * (tf.reduce_sum(tf.pow(w, 2)) / 2)
train = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)dataset = tf.data.Dataset.from_tensor_slices((train_features, train_labels))
dataset = dataset.repeat().batch(batch_size)
iterator = dataset.make_initializable_iterator()
next_data = iterator.get_next()train_loss = []
test_loss = []
init = [tf.global_variables_initializer(), iterator.initializer]
with tf.Session() as sess:sess.run(init)for i in range(epochs):for _ in range(20):batch_x, batch_y = sess.run(next_data)sess.run(train, feed_dict={x: batch_x,y: batch_y})train_loss.append(sess.run(loss, feed_dict={x: train_features,y: train_labels}))test_loss.append(sess.run(loss, feed_dict={x: test_features,y: test_labels}))plt.semilogy(range(1, epochs+1), train_loss)
plt.semilogy(range(1, epochs+1), test_loss)
plt.xlabel('epochs')
plt.ylabel('loss')
plt.show()

参考文献

[1] 使用 TensorFlow 了解權重衰減
[2] L2正则=Weight Decay?并不是这样
[3] 【TensorFlow-windows】(五) CNN(卷积神经网络)对cifar10的识别
[4] 动手学深度学习->权重衰减

这篇关于【深度学习笔记3.1 正则化】权重衰减(weight decay)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035273

相关文章

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识