将一个N*N的矩阵逆转90度

2024-06-06 05:48
文章标签 矩阵 90 逆转

本文主要是介绍将一个N*N的矩阵逆转90度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

//将一个N*N的矩阵逆转90度

#include <stdio.h>// 交换两个数
void swap(int *p1, int *p2)
{int temp;temp = *p1;*p1 = *p2;*p2 = temp;
}//必须指明数组长度
void Reverse90(int (&b)[2][2], int len)
{int i,j;for(i=0; i<len/2; ++i){   //转置矩阵for(j=i+1; j<len/2; j++)swap(&b[i][j],&b[j][i]);//每行对半交换for(j=0; j<len/2/2; j++)swap(&b[i][j],&b[i][len/2-1-j]);}
}int main(void)
{int a[2][2] = {1,2,3,4};Reverse90(a,4);int i;for(i=0; i<4; ++i)printf("%d ",*(*a+i));return 0;
}

这篇关于将一个N*N的矩阵逆转90度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035249

相关文章

90、k8s之secret+configMap

一、secret配置管理 配置管理: 加密配置:保存密码,token,其他敏感信息的k8s资源 应用配置:我们需要定制化的给应用进行配置,我们需要把定制好的配置文件同步到pod当中容器 1.1、加密配置: secret: [root@master01 ~]# kubectl get secrets ##查看加密配置[root@master01 ~]# kubectl get se

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

Android 10.0 mtk平板camera2横屏预览旋转90度横屏拍照图片旋转90度功能实现

1.前言 在10.0的系统rom定制化开发中,在进行一些平板等默认横屏的设备开发的过程中,需要在进入camera2的 时候,默认预览图像也是需要横屏显示的,在上一篇已经实现了横屏预览功能,然后发现横屏预览后,拍照保存的图片 依然是竖屏的,所以说同样需要将图片也保存为横屏图标了,所以就需要看下mtk的camera2的相关横屏保存图片功能, 如何实现实现横屏保存图片功能 如图所示: 2.mtk

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

代码随想录刷题day24丨93.复原IP地址 ,78.子集 , 90.子集II

代码随想录刷题day24丨93.复原IP地址 ,78.子集 , 90.子集II 1.题目 1.1复原IP地址 题目链接:93. 复原 IP 地址 - 力扣(LeetCode) 视频讲解:回溯算法如何分割字符串并判断是合法IP?| LeetCode:93.复原IP地址_哔哩哔哩_bilibili 文档讲解:https://programmercarl.com/0093.%E5%A4%8

【UVA】10003-Cutting Sticks(动态规划、矩阵链乘)

一道动态规划题,不过似乎可以用回溯水过去,回溯的话效率很烂的。 13988658 10003 Cutting Sticks Accepted C++ 1.882 2014-08-04 09:26:49 AC代码: #include<cstdio>#include<cstring>#include<iostream>#include<algorithm>#include

算法练习题17——leetcode54螺旋矩阵

题目描述 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。  代码 import java.util.*;class Solution {public List<Integer> spiralOrder(int[][] matrix) {// 用于存储螺旋顺序遍历的结果List<Integer> result = new ArrayList