代码随想录算法训练营day29|491.递增子序列、46.全排列、47.全排列II

2024-06-06 05:12

本文主要是介绍代码随想录算法训练营day29|491.递增子序列、46.全排列、47.全排列II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

递增子序列

491. 非递减子序列 - 力扣(LeetCode)

        非递减子序列,则答案的子集中,需保持下一个元素大于等于前一个元素的顺序,由于题目中指出,所有的子序列长度需大于等于2,考虑当条件为path.size()>1时,进行收获结果,且需要注意,这时不应该直接return,因为后续仍有可能存在子序列长度大于2的结果,仍需要继续遍历。此时结束的标志是单层遍历的结束。

        如果只按照上述向下运行,没有完成子序列的去重操作,为了完成子序列的去重以及保证下一个元素大于当前元素才加入数组,考虑加入一个set,在对当前层进行遍历时,若该元素没有使用过,将其加入set,若该元素大于path的末尾元素,将其加入path。之后继续回溯,回溯完成后复原path。具体思路参考代码随想录。

代码随想录 (programmercarl.com)icon-default.png?t=N7T8https://programmercarl.com/0491.%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE

class Solution {
public:vector<int> path; // 存储当前递增子序列vector<vector<int>> paths; // 存储所有不同的递增子序列void backtracking(vector<int>& nums, int start) {if (path.size() >= 2) {paths.push_back(path); // 将满足条件的子序列添加到结果中}unordered_set<int> uset; // 用于去重for (int i = start; i < nums.size(); ++i) {if ((!path.empty() && nums[i] < path.back()) || uset.find(nums[i]) != uset.end()) {continue; // 跳过不满足条件的元素}uset.insert(nums[i]);path.push_back(nums[i]);backtracking(nums, i + 1); // 递归搜索下一个元素path.pop_back(); // 回溯,移除当前元素}}vector<vector<int>> findSubsequences(vector<int>& nums) {backtracking(nums, 0); // 从第一个元素开始搜索return paths;}
};

回溯法寻找递增子序列的过程,在最差情况下需要遍历所有可能的子序列,每个元素都有可能存在或者不存在与子序列中,所以算法的时间复杂度为O(2^n),就空间复杂度来说,使用了哈希集合来检查是否已经包含了某个元素,使用了一个辅助的path来存储当前的子序列,在递归的过程中,path和uset都会不断改变,但最大的情况为递归的最深处,此时应有n层,因此空间复杂度为O(n)。

全排列

46. 全排列 - 力扣(LeetCode)

思路:从数组的第一个元素开始,逐步构建排列,对于每个位置,将不同的数字放在该位置上,然后递归地处理下一个位置。若当前位置已经包含了某元素,则我们要跳过它,选择其他数字,条件为

 if (find(path.begin(), path.end(), nums[i]) == path.end()) 

治理find函数返回的迭代器等于path.end(),说明nums[i]不在path中,即当前数字还没有被使用过。

当排列的长度等于数组的长度时,收获为一个有效的排列。

if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存该排列return;}

整体代码如下。

class Solution {
public:vector<int> path; // 保存当前排列vector<vector<int>> result; // 保存所有不同的排列void backtracking(vector<int>& nums, int start) {if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存该排列return;}for (int i = 0; i < nums.size(); ++i) {if (find(path.begin(), path.end(), nums[i]) == path.end()) {// 如果当前数字不在排列中,将其添加到排列中path.push_back(nums[i]);backtracking(nums, i + 1); // 递归搜索下一个位置path.pop_back(); // 回溯,移除当前数字}}}vector<vector<int>> permute(vector<int>& nums) {backtracking(nums, 0); // 从第一个位置开始搜索return result;}
};

排列的时间复杂度为O(n!),每个位置,都可以选择不同的数字。

空间复杂度为O(n)。

全排列II

47. 全排列 II - 力扣(LeetCode)

错误代码,使用了start

class Solution {
public:vector<int> path; // 保存当前排列vector<vector<int>> result; // 保存所有不同的排列void backtracking(vector<int>& nums, int start) {if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存该排列return;}for (int i = 0; i < nums.size(); ++i) {if(start > 0 and nums[i]== nums[i - 1]){continue;}path.push_back(nums[i]);backtracking(nums, i + 1); // 递归搜索下一个位置path.pop_back(); // 回溯,移除当前数字}}vector<vector<int>> permuteUnique(vector<int>& nums) {sort(nums.begin(), nums.end()); // 首先排序,以便去除重复排列backtracking(nums, 0);return result;}
};

正确代码

class Solution {
public:vector<int> path; // 保存当前排列vector<vector<int>> result; // 保存所有不同的排列void backtracking(vector<int>& nums, vector<bool>& used, int start) {if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存它return;}for (int i = 0; i < nums.size(); ++i) {if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {continue; // 跳过重复的元素}if (!used[i]) {path.push_back(nums[i]);used[i] = true;backtracking(nums, used, i + 1); // 递归搜索下一个位置path.pop_back(); // 回溯,移除当前数字used[i] = false;}}}vector<vector<int>> permuteUnique(vector<int>& nums) {sort(nums.begin(), nums.end()); // 首先排序,以便去除重复排列vector<bool> used(nums.size(), false); // 初始化 used 数组backtracking(nums, used, 0);return result;}
};

start可有可无

算法的时间复杂度为O(n!),空间复杂度为O(n),同上。

这篇关于代码随想录算法训练营day29|491.递增子序列、46.全排列、47.全排列II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035179

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时