代码随想录算法训练营day29|491.递增子序列、46.全排列、47.全排列II

2024-06-06 05:12

本文主要是介绍代码随想录算法训练营day29|491.递增子序列、46.全排列、47.全排列II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

递增子序列

491. 非递减子序列 - 力扣(LeetCode)

        非递减子序列,则答案的子集中,需保持下一个元素大于等于前一个元素的顺序,由于题目中指出,所有的子序列长度需大于等于2,考虑当条件为path.size()>1时,进行收获结果,且需要注意,这时不应该直接return,因为后续仍有可能存在子序列长度大于2的结果,仍需要继续遍历。此时结束的标志是单层遍历的结束。

        如果只按照上述向下运行,没有完成子序列的去重操作,为了完成子序列的去重以及保证下一个元素大于当前元素才加入数组,考虑加入一个set,在对当前层进行遍历时,若该元素没有使用过,将其加入set,若该元素大于path的末尾元素,将其加入path。之后继续回溯,回溯完成后复原path。具体思路参考代码随想录。

代码随想录 (programmercarl.com)icon-default.png?t=N7T8https://programmercarl.com/0491.%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE

class Solution {
public:vector<int> path; // 存储当前递增子序列vector<vector<int>> paths; // 存储所有不同的递增子序列void backtracking(vector<int>& nums, int start) {if (path.size() >= 2) {paths.push_back(path); // 将满足条件的子序列添加到结果中}unordered_set<int> uset; // 用于去重for (int i = start; i < nums.size(); ++i) {if ((!path.empty() && nums[i] < path.back()) || uset.find(nums[i]) != uset.end()) {continue; // 跳过不满足条件的元素}uset.insert(nums[i]);path.push_back(nums[i]);backtracking(nums, i + 1); // 递归搜索下一个元素path.pop_back(); // 回溯,移除当前元素}}vector<vector<int>> findSubsequences(vector<int>& nums) {backtracking(nums, 0); // 从第一个元素开始搜索return paths;}
};

回溯法寻找递增子序列的过程,在最差情况下需要遍历所有可能的子序列,每个元素都有可能存在或者不存在与子序列中,所以算法的时间复杂度为O(2^n),就空间复杂度来说,使用了哈希集合来检查是否已经包含了某个元素,使用了一个辅助的path来存储当前的子序列,在递归的过程中,path和uset都会不断改变,但最大的情况为递归的最深处,此时应有n层,因此空间复杂度为O(n)。

全排列

46. 全排列 - 力扣(LeetCode)

思路:从数组的第一个元素开始,逐步构建排列,对于每个位置,将不同的数字放在该位置上,然后递归地处理下一个位置。若当前位置已经包含了某元素,则我们要跳过它,选择其他数字,条件为

 if (find(path.begin(), path.end(), nums[i]) == path.end()) 

治理find函数返回的迭代器等于path.end(),说明nums[i]不在path中,即当前数字还没有被使用过。

当排列的长度等于数组的长度时,收获为一个有效的排列。

if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存该排列return;}

整体代码如下。

class Solution {
public:vector<int> path; // 保存当前排列vector<vector<int>> result; // 保存所有不同的排列void backtracking(vector<int>& nums, int start) {if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存该排列return;}for (int i = 0; i < nums.size(); ++i) {if (find(path.begin(), path.end(), nums[i]) == path.end()) {// 如果当前数字不在排列中,将其添加到排列中path.push_back(nums[i]);backtracking(nums, i + 1); // 递归搜索下一个位置path.pop_back(); // 回溯,移除当前数字}}}vector<vector<int>> permute(vector<int>& nums) {backtracking(nums, 0); // 从第一个位置开始搜索return result;}
};

排列的时间复杂度为O(n!),每个位置,都可以选择不同的数字。

空间复杂度为O(n)。

全排列II

47. 全排列 II - 力扣(LeetCode)

错误代码,使用了start

class Solution {
public:vector<int> path; // 保存当前排列vector<vector<int>> result; // 保存所有不同的排列void backtracking(vector<int>& nums, int start) {if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存该排列return;}for (int i = 0; i < nums.size(); ++i) {if(start > 0 and nums[i]== nums[i - 1]){continue;}path.push_back(nums[i]);backtracking(nums, i + 1); // 递归搜索下一个位置path.pop_back(); // 回溯,移除当前数字}}vector<vector<int>> permuteUnique(vector<int>& nums) {sort(nums.begin(), nums.end()); // 首先排序,以便去除重复排列backtracking(nums, 0);return result;}
};

正确代码

class Solution {
public:vector<int> path; // 保存当前排列vector<vector<int>> result; // 保存所有不同的排列void backtracking(vector<int>& nums, vector<bool>& used, int start) {if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存它return;}for (int i = 0; i < nums.size(); ++i) {if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {continue; // 跳过重复的元素}if (!used[i]) {path.push_back(nums[i]);used[i] = true;backtracking(nums, used, i + 1); // 递归搜索下一个位置path.pop_back(); // 回溯,移除当前数字used[i] = false;}}}vector<vector<int>> permuteUnique(vector<int>& nums) {sort(nums.begin(), nums.end()); // 首先排序,以便去除重复排列vector<bool> used(nums.size(), false); // 初始化 used 数组backtracking(nums, used, 0);return result;}
};

start可有可无

算法的时间复杂度为O(n!),空间复杂度为O(n),同上。

这篇关于代码随想录算法训练营day29|491.递增子序列、46.全排列、47.全排列II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035179

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义