Meta Llama 3 残差结构

2024-06-05 22:20
文章标签 meta 结构 llama 残差

本文主要是介绍Meta Llama 3 残差结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Meta Llama 3 残差结构

flyfish

在Transformer架构中,残差结构(Residual Connections)是一个关键组件,它在模型的性能和训练稳定性上起到了重要作用。残差结构最早由He et al.在ResNet中提出,并被广泛应用于各种深度学习模型中。

残差结构的定义
残差结构通过将输入直接与通过一个或多个变换后的输出相加来形成。具体来说,如果输入为 x,经过某种变换后的输出为 F(x),那么残差结构的输出可以表示为:
y = F ( x ) + x y = F(x) + x y=F(x)+x
在Transformer中,残差结构通常与层归一化(Layer Normalization)一起使用,形成以下模式:
y = LayerNorm ( x + SubLayer ( x ) ) y = \text{LayerNorm}(x + \text{SubLayer}(x)) y=LayerNorm(x+SubLayer(x))
其中,SubLayer可以是多头自注意力机制(Multi-Head Self-Attention)或前馈神经网络(Feed-Forward Neural Network)。

残差结构
缓解梯度消失问题:
在深层神经网络中,梯度消失问题是一个常见的挑战,导致模型在训练过程中难以有效地传播梯度信号。残差结构通过引入快捷连接(skip connections),允许梯度直接通过这些连接进行传播,从而缓解了梯度消失问题。

加速模型训练:
残差结构使得模型能够更快地收敛,因为它简化了对标识映射(identity mapping)的学习。如果没有残差结构,模型需要学会每一层都能正确地变换输入;而有了残差结构后,模型只需学习相对较小的变换。

提高模型性能:
残差结构通过直接添加输入,可以帮助模型更好地捕捉输入数据中的特征,从而提高模型的性能。在Transformer中,这一特性尤为重要,因为它允许每一层都能保留和传递重要的信息。

增强模型的表达能力:
残差结构使得模型能够表示更复杂的函数。通过允许模型直接添加输入和输出,残差结构提高了模型的表达能力,使得它能够处理更复杂的任务。

在Transformer模型中,残差结构主要应用在以下两个子层中:

多头自注意力机制(Multi-Head Self-Attention):
残差连接与层归一化一起,围绕在多头自注意力机制的外部。假设输入为 x,多头自注意力的输出为 MHSA(x),那么残差连接后的输出为:
y = LayerNorm ( x + MHSA ( x ) ) y = \text{LayerNorm}(x + \text{MHSA}(x)) y=LayerNorm(x+MHSA(x))

前馈神经网络(Feed-Forward Neural Network, FFN):
同样地,残差连接与层归一化一起,围绕在前馈神经网络的外部。假设输入为 x,前馈神经网络的输出为 FFN(x),那么残差连接后的输出为:
y = LayerNorm ( x + FFN ( x ) ) y = \text{LayerNorm}(x + \text{FFN}(x)) y=LayerNorm(x+FFN(x))

代码展示

import torch
import torch.nn as nn
import torch.nn.functional as Fclass TransformerLayer(nn.Module):def __init__(self, d_model, num_heads, dim_feedforward, dropout=0.1):super(TransformerLayer, self).__init__()self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)self.linear1 = nn.Linear(d_model, dim_feedforward)self.dropout = nn.Dropout(dropout)self.linear2 = nn.Linear(dim_feedforward, d_model)self.norm1 = nn.LayerNorm(d_model)self.norm2 = nn.LayerNorm(d_model)self.dropout1 = nn.Dropout(dropout)self.dropout2 = nn.Dropout(dropout)def forward(self, x, src_mask=None, src_key_padding_mask=None):# Self-attention sub-layer with residual connectionattn_output, _ = self.self_attn(x, x, x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)x = x + self.dropout1(attn_output)x = self.norm1(x)# Feed-forward sub-layer with residual connectionff_output = self.linear2(self.dropout(F.relu(self.linear1(x))))x = x + self.dropout2(ff_output)x = self.norm2(x)return x# 定义模型参数
d_model = 512
num_heads = 8
dim_feedforward = 2048
dropout = 0.1# 创建一个包含单个 TransformerLayer 的模型
transformer_layer = TransformerLayer(d_model, num_heads, dim_feedforward, dropout)# 创建一个示例输入张量 (seq_length, batch_size, d_model)
seq_length = 10
batch_size = 32
input_tensor = torch.randn(seq_length, batch_size, d_model)# 执行前向传播
output = transformer_layer(input_tensor)print("Output shape:", output.shape)

参数定义:

d_model:模型的维度,即输入和输出的维度。
num_heads:多头自注意力机制中的头数。
dim_feedforward:前馈神经网络的隐藏层维度。
dropout:Dropout 概率,用于正则化。
输入张量:

input_tensor 的形状为 (seq_length, batch_size, d_model),其中 seq_length 是序列长度,batch_size 是批次大小,d_model 是每个输入的维度。
前向传播:

将 input_tensor 传递给 TransformerLayer 模块,获得输出 output。
输出形状:

输出的形状与输入的形状相同,为 (seq_length, batch_size, d_model)。
运行结果
Output shape: torch.Size([10, 32, 512])

在这里插入图片描述
标准Transformer使用LayerNorm,并在子层输入和残差连接之后进行归一化。
Llama 3 使用RMSNorm代替LayerNorm,并且只在子层输入前进行归一化。

# 标准Transformer中的残差块
class TransformerBlock(nn.Module):def __init__(self, dim, n_heads):super().__init__()self.attention = MultiHeadAttention(dim, n_heads)self.feed_forward = FeedForward(dim)self.norm1 = LayerNorm(dim)self.norm2 = LayerNorm(dim)def forward(self, x):h = self.norm1(x)h = x + self.attention(h)h = self.norm2(h)out = h + self.feed_forward(h)return out# Llama 3 中的残差块
class LlamaBlock(nn.Module):def __init__(self, dim, n_heads, norm_eps):super().__init__()self.attention = Attention(dim, n_heads)self.feed_forward = FeedForward(dim)self.attention_norm = RMSNorm(dim, eps=norm_eps)self.ffn_norm = RMSNorm(dim, eps=norm_eps)def forward(self, x, start_pos, freqs_cis, mask):h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)out = h + self.feed_forward(self.ffn_norm(h))return out

这篇关于Meta Llama 3 残差结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034327

相关文章

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

如何使用Maven创建web目录结构

《如何使用Maven创建web目录结构》:本文主要介绍如何使用Maven创建web目录结构的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录创建web工程第一步第二步第三步第四步第五步第六步第七步总结创建web工程第一步js通过Maven骨架创pytho

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动

Python循环结构全面解析

《Python循环结构全面解析》循环中的代码会执行特定的次数,或者是执行到特定条件成立时结束循环,或者是针对某一集合中的所有项目都执行一次,这篇文章给大家介绍Python循环结构解析,感兴趣的朋友跟随... 目录for-in循环while循环循环控制语句break语句continue语句else子句嵌套的循

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多