CGS与MGS的矩阵正交化-C语言实现

2024-06-05 22:04
文章标签 语言 实现 矩阵 正交 mgs cgs

本文主要是介绍CGS与MGS的矩阵正交化-C语言实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

格拉姆-施密特正交化和改进的格拉姆-施密特正交化

格拉姆-施密特正交化CGS

数学公式

代码实现:

过程版

矩阵运算实现的难点在于每次运算都是一个向量,需要for循环进行,会带来运算时在代码中的复杂,进而难以理解代码的过程

Q矩阵是{e...}  R矩阵是上三角矩阵 
Q[0] = A[0];   // -> b1 = a1
R[0][0] = norm(Q[0], m); //-> ||b1||
Q[0] =A[0] / R[0][0];    //-> b1/||b1||

先求 a_{2}^{T}e_{1}      R[1][2] = dotProduct(A[i], Q[j], m);

再用 Q[2] = A[2]; //这样可以使用迭代去求b2

R[j][i] = dotProduct(A[i], Q[j], m); // -> a2Te1Q[i][k] = A[i][k];   //方便下一般实现循环递归减
Q[i][k] -=  R[j][i]*Q[j][k];   //用于递归实现 bn = an - anTen-1en-1-...R[i][i] = norm(Q[i], m);// -> ||b1||
Q[i][k] /= R[i][i];    //-> b1/||b1||

纯净版

void cgs(double** A, int m, int n, double** Q, double** R) {if (n>=1){R[0][0] = norm(A[0], m);for (int k = 0; k < m; k++) {Q[0][k] =A[0][k]/ R[0][0];}}for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {R[j][i] = dotProduct(A[i], Q[j], m);}for (int k = 0; k < m; k++){Q[i][k] = A[i][k];}for (int j = 0; j < i; j++) {for (int k = 0; k < m; k++) {Q[i][k] -=  R[j][i]*Q[j][k];}}R[i][i] = norm(Q[i], m);for (int k = 0; k < m; k++) {Q[i][k] /= R[i][i];}}
}

改进的格拉姆-施密特正交化MGS

数学公式

在于先求e 每次都对全部b进行运算

代码实现

过程版

for (int i = 0; i < m; i++)

{

        Q[i]= A[i];

}

for (int i = 0; i < m; i++)
{for (int j = 0; j < n; j++){Q[i][j] = A[i][j];}
}

R[i][i] = norm(Q[i], m);
for (int k = 0; k < m; k++) {Q[i][k] /= R[i][i];
}

先求 b_{2}^{T}e_{1}    

 R[i][j] = dotProduct(Q[i], Q[j], m);

对每一个b仅需运算 每一个循环都会少计算b1,b2,b3..bn所以j = i+1

 for (int j = i + 1; j < n; j++) {for (int k = 0; k < m; k++) {Q[j][k] -= Q[i][k] * R[i][j];}}

纯净版

void mgs(double** A, int m, int n, double** Q, double** R) {for (int i = 0; i < m; i++){for (int j = 0; j < n; j++){Q[i][j] = A[i][j];}}for (int i = 0; i < n; i++) {R[i][i] = norm(Q[i], m);for (int k = 0; k < m; k++) {Q[i][k] /= R[i][i];}// 计算 R元素 b2Tei b3Tei...  Q[i]=e[i]for (int j = i + 1; j < n; j++) {R[i][j] = dotProduct(Q[i], Q[j], m);}// 更新 Qfor (int j = i + 1; j < n; j++) {for (int k = 0; k < m; k++) {Q[j][k] -= Q[i][k] * R[i][j];}}}
}

参考博客:

下文有博主有python实现

图解格拉姆-施密特正交化和改进的格拉姆-施密特正交化_matlab实现格拉姆-施密特正交化-CSDN博客

这篇关于CGS与MGS的矩阵正交化-C语言实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034288

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3