CGS与MGS的矩阵正交化-C语言实现

2024-06-05 22:04
文章标签 语言 实现 矩阵 正交 mgs cgs

本文主要是介绍CGS与MGS的矩阵正交化-C语言实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

格拉姆-施密特正交化和改进的格拉姆-施密特正交化

格拉姆-施密特正交化CGS

数学公式

代码实现:

过程版

矩阵运算实现的难点在于每次运算都是一个向量,需要for循环进行,会带来运算时在代码中的复杂,进而难以理解代码的过程

Q矩阵是{e...}  R矩阵是上三角矩阵 
Q[0] = A[0];   // -> b1 = a1
R[0][0] = norm(Q[0], m); //-> ||b1||
Q[0] =A[0] / R[0][0];    //-> b1/||b1||

先求 a_{2}^{T}e_{1}      R[1][2] = dotProduct(A[i], Q[j], m);

再用 Q[2] = A[2]; //这样可以使用迭代去求b2

R[j][i] = dotProduct(A[i], Q[j], m); // -> a2Te1Q[i][k] = A[i][k];   //方便下一般实现循环递归减
Q[i][k] -=  R[j][i]*Q[j][k];   //用于递归实现 bn = an - anTen-1en-1-...R[i][i] = norm(Q[i], m);// -> ||b1||
Q[i][k] /= R[i][i];    //-> b1/||b1||

纯净版

void cgs(double** A, int m, int n, double** Q, double** R) {if (n>=1){R[0][0] = norm(A[0], m);for (int k = 0; k < m; k++) {Q[0][k] =A[0][k]/ R[0][0];}}for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {R[j][i] = dotProduct(A[i], Q[j], m);}for (int k = 0; k < m; k++){Q[i][k] = A[i][k];}for (int j = 0; j < i; j++) {for (int k = 0; k < m; k++) {Q[i][k] -=  R[j][i]*Q[j][k];}}R[i][i] = norm(Q[i], m);for (int k = 0; k < m; k++) {Q[i][k] /= R[i][i];}}
}

改进的格拉姆-施密特正交化MGS

数学公式

在于先求e 每次都对全部b进行运算

代码实现

过程版

for (int i = 0; i < m; i++)

{

        Q[i]= A[i];

}

for (int i = 0; i < m; i++)
{for (int j = 0; j < n; j++){Q[i][j] = A[i][j];}
}

R[i][i] = norm(Q[i], m);
for (int k = 0; k < m; k++) {Q[i][k] /= R[i][i];
}

先求 b_{2}^{T}e_{1}    

 R[i][j] = dotProduct(Q[i], Q[j], m);

对每一个b仅需运算 每一个循环都会少计算b1,b2,b3..bn所以j = i+1

 for (int j = i + 1; j < n; j++) {for (int k = 0; k < m; k++) {Q[j][k] -= Q[i][k] * R[i][j];}}

纯净版

void mgs(double** A, int m, int n, double** Q, double** R) {for (int i = 0; i < m; i++){for (int j = 0; j < n; j++){Q[i][j] = A[i][j];}}for (int i = 0; i < n; i++) {R[i][i] = norm(Q[i], m);for (int k = 0; k < m; k++) {Q[i][k] /= R[i][i];}// 计算 R元素 b2Tei b3Tei...  Q[i]=e[i]for (int j = i + 1; j < n; j++) {R[i][j] = dotProduct(Q[i], Q[j], m);}// 更新 Qfor (int j = i + 1; j < n; j++) {for (int k = 0; k < m; k++) {Q[j][k] -= Q[i][k] * R[i][j];}}}
}

参考博客:

下文有博主有python实现

图解格拉姆-施密特正交化和改进的格拉姆-施密特正交化_matlab实现格拉姆-施密特正交化-CSDN博客

这篇关于CGS与MGS的矩阵正交化-C语言实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034288

相关文章

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.