CGS与MGS的矩阵正交化-C语言实现

2024-06-05 22:04
文章标签 语言 实现 矩阵 正交 mgs cgs

本文主要是介绍CGS与MGS的矩阵正交化-C语言实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

格拉姆-施密特正交化和改进的格拉姆-施密特正交化

格拉姆-施密特正交化CGS

数学公式

代码实现:

过程版

矩阵运算实现的难点在于每次运算都是一个向量,需要for循环进行,会带来运算时在代码中的复杂,进而难以理解代码的过程

Q矩阵是{e...}  R矩阵是上三角矩阵 
Q[0] = A[0];   // -> b1 = a1
R[0][0] = norm(Q[0], m); //-> ||b1||
Q[0] =A[0] / R[0][0];    //-> b1/||b1||

先求 a_{2}^{T}e_{1}      R[1][2] = dotProduct(A[i], Q[j], m);

再用 Q[2] = A[2]; //这样可以使用迭代去求b2

R[j][i] = dotProduct(A[i], Q[j], m); // -> a2Te1Q[i][k] = A[i][k];   //方便下一般实现循环递归减
Q[i][k] -=  R[j][i]*Q[j][k];   //用于递归实现 bn = an - anTen-1en-1-...R[i][i] = norm(Q[i], m);// -> ||b1||
Q[i][k] /= R[i][i];    //-> b1/||b1||

纯净版

void cgs(double** A, int m, int n, double** Q, double** R) {if (n>=1){R[0][0] = norm(A[0], m);for (int k = 0; k < m; k++) {Q[0][k] =A[0][k]/ R[0][0];}}for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {R[j][i] = dotProduct(A[i], Q[j], m);}for (int k = 0; k < m; k++){Q[i][k] = A[i][k];}for (int j = 0; j < i; j++) {for (int k = 0; k < m; k++) {Q[i][k] -=  R[j][i]*Q[j][k];}}R[i][i] = norm(Q[i], m);for (int k = 0; k < m; k++) {Q[i][k] /= R[i][i];}}
}

改进的格拉姆-施密特正交化MGS

数学公式

在于先求e 每次都对全部b进行运算

代码实现

过程版

for (int i = 0; i < m; i++)

{

        Q[i]= A[i];

}

for (int i = 0; i < m; i++)
{for (int j = 0; j < n; j++){Q[i][j] = A[i][j];}
}

R[i][i] = norm(Q[i], m);
for (int k = 0; k < m; k++) {Q[i][k] /= R[i][i];
}

先求 b_{2}^{T}e_{1}    

 R[i][j] = dotProduct(Q[i], Q[j], m);

对每一个b仅需运算 每一个循环都会少计算b1,b2,b3..bn所以j = i+1

 for (int j = i + 1; j < n; j++) {for (int k = 0; k < m; k++) {Q[j][k] -= Q[i][k] * R[i][j];}}

纯净版

void mgs(double** A, int m, int n, double** Q, double** R) {for (int i = 0; i < m; i++){for (int j = 0; j < n; j++){Q[i][j] = A[i][j];}}for (int i = 0; i < n; i++) {R[i][i] = norm(Q[i], m);for (int k = 0; k < m; k++) {Q[i][k] /= R[i][i];}// 计算 R元素 b2Tei b3Tei...  Q[i]=e[i]for (int j = i + 1; j < n; j++) {R[i][j] = dotProduct(Q[i], Q[j], m);}// 更新 Qfor (int j = i + 1; j < n; j++) {for (int k = 0; k < m; k++) {Q[j][k] -= Q[i][k] * R[i][j];}}}
}

参考博客:

下文有博主有python实现

图解格拉姆-施密特正交化和改进的格拉姆-施密特正交化_matlab实现格拉姆-施密特正交化-CSDN博客

这篇关于CGS与MGS的矩阵正交化-C语言实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034288

相关文章

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代