非线性优化库g2o使用教程,探索一些常见的用法,以及信息矩阵、鲁棒核函数对于优化的结果的影响

本文主要是介绍非线性优化库g2o使用教程,探索一些常见的用法,以及信息矩阵、鲁棒核函数对于优化的结果的影响,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇博客将总结一些常见的g2o用法。通过这篇内容你将至少可以大致掌握g2o的用法,以及一些可以使优化结果更好的小技巧,包括鲁邦和函数、信息矩阵的用法等等。

注意:本篇博客的重点是介绍g2o,所以不会去为非线性化方法做太多的铺垫,因此要想理解以下代码和思路,需要你具备一些非线性优化的理论知识,至少要明白什么是非线性优化,它主要是为了做什么,它是怎么实现的?

我们先来看第一个例子:曲线拟合

1.曲线拟合

在这里插入图片描述

图1

我们现在有以下任务要求:找到一条函数曲线去拟合上图中的这些散点,使得所有点均匀的分散在这个拟合曲线的两侧

散点:图一中那些离散的蓝色圆点。

这里我给出一种思路,主要是为了帮助对非线性优化不是很熟悉的同学。咱们想一下如果有这么一条曲线,所有散点到它的距离之和最小,那么是不是这条曲线就可以很好的拟合这些散点了。

下面我将通过一些数学公式来描述这个数学问题,但是我会省略一些过程。(请不要忘记我们目标是学习g2o的用法)

假设,我们要用来拟合这些散点的函数是: y = a exp ⁡ ( − λ x + b ) y = a\exp(-\lambda x + b) y=aexp(λx+b)

类似的,按照上面说的思路,要实现所有距离之和最小,可以用如下数学式来表达:
min ⁡ a , b , λ ∑ i N ( y i − a exp ⁡ ( − λ x i + b ) ) (1) \min_{a,b,\lambda} \sum_i^N (y_i-a\exp(-\lambda x_i + b)) \tag 1 a,b,λminiN(yiaexp(λxi+b))(1)

当然你也可以构造成的别的形式,方法并不唯一

我们的目标就是找到一组 a , b , λ a,b,\lambda a,b,λ的解,使得式(1)整体值最小,也就是各个点到曲线的距离在 y y y方向的和最小。

数学上处理(1)式的大致思路是:对其进行求导,然后通过导数确定函数值下降的方向,然后通过迭代的方式获得(1)式最小值时对应的 a , b , λ a,b,\lambda a,b,λ

不知道上面说的这些东西,你是否都理解,如果你觉得理解不了,你需要看一些关于非线性优化的资料,了解一些它的目的和思路!

下面我们就进入g2o优化的阶段,我们来看一下g2o是怎么处理这个问题的。在g2o中,对于优化问题统统都抽象成边和顶点来表示

  • 顶点:待优化的变量
  • 边:每一个误差项

上述表述,有一些抽象。对应曲线拟合这个例子来,那么顶点就是我们要求的变量 a , b , λ a,b,\lambda a,b,λ,边就是每一个测量对应的误差,更具体一点儿来说就是 y i − a exp ⁡ ( − λ x i + b ) y_i-a\exp(-\lambda x_i + b) yiaexp(λxi+b)的值。

那么这个曲线的拟合的例子中,就只有一个顶点,N条边!

只要是能把优化问题表示成顶点和边的形式,就可以非常容易的调用g2o来进行优化。

我们先来看一下g2o的类组成关系
在这里插入图片描述

图2

我们从SparseOptimizer这个类开始看,它需要一个OptimazationAlgorithm,g2o中提供了三种优化算法可以选择,GN、LM、DogLeg。而OptimazationAlgorithm需要一个Solver,同样的可以有多种求解器来选择。类似的可以看到SparseOptimizer就是一个HyperGraph,它由多个边和多个顶点组成。

总结起来,g2o的用法就是先构造优化算法,然后构造边和顶点,最后就可以进行优化的操作了。

下面咱们先来构造优化优化算法,代码如下:

	//为了代码简洁typedef g2o::BlockSolver<g2o::BlockSolverTraits<Eigen::Dynamic, Eigen::Dynamic> > MyBlockSolver;//block求解器typedef g2o::LinearSolverDense<MyBlockSolver::PoseMatrixType> MyLinearSolver;//线性求解器// 初始化一个SparseOptimizer对象g2o::SparseOptimizer optimizer;//初始化一个优化算法g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(g2o::make_unique<MyBlockSolver>(g2o::make_unique<MyLinearSolver>()));//将优化算法设置给SparseOptimizeroptimizer.setAlgorithm(solver);

以上就是一个最简单的SparseOptimizer对象的构造方法,有了这个优化器,然后再添加边和顶点:
顶点

//根据图2的顶点构造关系,需要从基类中继承,然后对基类BaseVertex中的一些虚函数进行实现
class VertexParams : public g2o::BaseVertex<3, Eigen::Vector3d> {
public://Eigen自动内存对齐EIGEN_MAKE_ALIGNED_OPERATOR_NEW;VertexParams() = default;//默认构造函数bool read(std::istream & /*is*/) override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;return false;}bool write(std::ostream & /*os*/) const override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;return false;}void setToOriginImpl() override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;}//设置顶点估计值的更新void oplusImpl(const double *update) override {Eigen::Vector3d::ConstMapType v(update);_estimate += v;}
};

//按照图2的流程,需要从基类中继承,由于我们这里顶点只有一个,所以就选用一元边,
//那么就从一元边的基类BaseUnaryEdge中继承,然后重写其中的一些重要虚函数
class EdgePointOnCurve : public g2o::BaseUnaryEdge<1, Eigen::Vector2d, VertexParams> {
public://Eigen自动内存对齐EIGEN_MAKE_ALIGNED_OPERATOR_NEWEdgePointOnCurve() = default;//默认构造函数,比手动效率更高bool read(std::istream & /*is*/) override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;return false;}bool write(std::ostream & /*os*/) const override {cerr << __PRETTY_FUNCTION__ << " not implemented yet" << endl;return false;}//	误差的计算函数void computeError() override {const VertexParams *params = dynamic_cast<const VertexParams *>(vertex(0));const double &a = params->estimate()(0);const double &b = params->estimate()(1);const double &lambda = params->estimate()(2);double fval = a * exp(-lambda * measurement()(0)) + b;_error(0) = std::abs(fval - measurement()(1));}
};

以上就定义完成了,曲线拟合任务优化的顶点和边

然后就需要将顶点和边添加到优化器中:

添加顶点

    VertexParams *params = new VertexParams();params->setId(0);//设置顶点编号// 设置顶点的初始估计值,相当于a, b, $\lambda$的初始估计值都为1params->setEstimate(Eigen::Vector3d(1, 1, 1)); optimizer.addVertex(params);//将顶点添加到优化器中

添加边

for (int i = 0; i < numPoints; ++i) {//新建一个边EdgePointOnCurve *e = new EdgePointOnCurve;e->setInformation(Eigen::Matrix<double, 1, 1>::Identity());//信息矩阵e->setVertex(0, params);//设置边对应的顶点e->setMeasurement(points[i]);//设置边的测量值optimizer.addEdge(e);}

然后就可以进行优化了,对应的代码如下:

    optimizer.initializeOptimization();//初始化整个优化器optimizer.optimize(maxIterations);//开始执行优化,迭代的次数为maxIterations//输出最终优化得到的结果
cout << params->estimate()[0] << ", "<< params->estimate()[1] << ", "<< params->estimate()[2] << endl;

1.98896, 0.406936, 0.201035

该结果与我们设置的真值:2,0.4,0.2,相差无几,对应的拟合曲线如下:
在这里插入图片描述

图3

以上就是一个完整的g2o优化方法的使用流程。下面我们来做一些更细致的探讨!

鲁棒核函数

我们看一下这种情况,假设现在散点中一个很离谱的错误点,如图4
在这里插入图片描述

图4

由于右上角那个离谱的点,导致优化时将整个函数被拉偏了(可以对比图3)。

那么怎么解决这种问题呢?g2o中提供了鲁棒核函数来抑制某些误差特别大的点,拉偏整个优化结果。

鲁棒核函数不是g2o独有的,这是非线性优化方法中的一种常用手段!

使用方法如下:

		//构造一个Huber鲁棒核函数g2o::RobustKernelHuber* robust_kernel_huber = new g2o::RobustKernelHuber;robust_kernel_huber->setDelta(0.3);//设置delta的大小。注意这个要根据实际的应用场景去尝试,然后选择合适的大小e->setRobustKernel(robust_kernel_huber);//向边中添加鲁棒核函数

g2o中提供了多种鲁棒核函数,你可以根据自己的需要进行选择。

加入鲁棒核函数之后,结果明显好转。
在这里插入图片描述

如果你不了解鲁棒核函数的作用,你需要查看一下资料去学习一下

信息矩阵
现在来考虑另一种情况,比方说在一次优化中,对于某一次测量,我们有十足的把握,它非常的准确,所以优化时我们希望对于这次测量给予更高的权重。
在这里插入图片描述
如上图,假设我们认为左上角那个异常点是一个比较正确的点(只是假设),我们希望拟合的曲线尽量往这个点偏移。那么我们就这可以设置这次测量边的权重更大。

代码如下:

e->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 10);

因为测量值的维度为1,所以信息矩阵也为1。如果我们把每一条边的信息矩阵都设置为一样,那么在优化时将认为所有边的优化权重是一样的,将不会对某一条边执行过多的优化!

对于那个异常点设置权重为别的点的10倍,则曲线会往右上角那个点靠。最终的结果如下图:
在这里插入图片描述

一般情况下,信息矩阵和鲁棒核函数都会一起使用!

完整代码

如果你觉得上面代码中很多细节难以理解,那你不必花太多时间去理解细节,先从整体上去理解g2o的用法,然后多尝试一些例子,你的疑惑就会迎刃而解了!

2.更复杂的应用

TODO

这篇关于非线性优化库g2o使用教程,探索一些常见的用法,以及信息矩阵、鲁棒核函数对于优化的结果的影响的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033713

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁