Hadoop3:MapReduce之MapTask的Job任务提交流程原理解读(1)

2024-06-05 12:36

本文主要是介绍Hadoop3:MapReduce之MapTask的Job任务提交流程原理解读(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3、Job工作机制源码解读

用之前wordcount案例进行源码阅读,debug断点打在Job任务提交时
在这里插入图片描述


提交任务前,建立客户单连接
如下图,可以看出,只有两个客户端提供者,一个是YarnClient,一个是LocalClient。
显然,我这里是LocalClient模式
在这里插入图片描述
检查输出路径是否存在,存在则报错
在这里插入图片描述在这里插入图片描述
这里的两串提示就很熟悉了,如果输出路径存在,则报错。在这里插入图片描述
提交任务前会创建一个jobID,并创建相关文件夹,文件夹里存放临时的文件数据,job完成后会删除
在这里插入图片描述
切片和MapTask的关系:切片数决定MapTask线程数量
关键日志:number of splits
在这里插入图片描述


流程总结:

waitForCompletion()
submit();
// 1建立连接connect();	// 1)创建提交Job的代理new Cluster(getConfiguration());// (1)判断是本地运行环境还是yarn集群运行环境initialize(jobTrackAddr, conf); 
// 2 提交job
submitter.submitJobInternal(Job.this, cluster)// 1)创建给集群提交数据的Stag路径Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);// 2)获取jobid ,并创建Job路径JobID jobId = submitClient.getNewJobID();// 3)拷贝jar包到集群
copyAndConfigureFiles(job, submitJobDir);	rUploader.uploadFiles(job, jobSubmitDir);// 4)计算切片,生成切片规划文件
writeSplits(job, submitJobDir);maps = writeNewSplits(job, jobSubmitDir);input.getSplits(job);// 5)向Stag路径写XML配置文件
writeConf(conf, submitJobFile);conf.writeXml(out);// 6)提交Job,返回提交状态
status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());

流程图
在这里插入图片描述

这篇关于Hadoop3:MapReduce之MapTask的Job任务提交流程原理解读(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033072

相关文章

Security OAuth2 单点登录流程

单点登录(英语:Single sign-on,缩写为 SSO),又译为单一签入,一种对于许多相互关连,但是又是各自独立的软件系统,提供访问控制的属性。当拥有这项属性时,当用户登录时,就可以获取所有系统的访问权限,不用对每个单一系统都逐一登录。这项功能通常是以轻型目录访问协议(LDAP)来实现,在服务器上会将用户信息存储到LDAP数据库中。相同的,单一注销(single sign-off)就是指

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',