本文主要是介绍122 Triangular Sums,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Triangular Sums
- 描述
-
The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):
X
X X
X X X
X X X X
Write a program to compute the weighted sum of triangular numbers:
W(n) =
SUM[k = 1…n; k * T(k + 1)]
- 输入
- The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle. 输出 - For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n. 样例输入
-
4 3 4 5 10
样例输出 -
1 3 45 2 4 105 3 5 210 4 10 2145
- The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.
#include<iostream>
#include<stdio.h>
using namespace std;int main()
{int n,m,i,j,t,w;scanf("%d",&n);for(i=1;i<=n;i++){t=1;w=0;scanf("%d",&m);for(j=2;j<=m;j++){t+=j;w+=(j-1)*t;}t+=j;w+=(j-1)*t;printf("%d %d %ld\n",i,m,w);}
}
这篇关于122 Triangular Sums的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!