Python-3.12.0文档解读-内置函数zip()详细说明+记忆策略+常用场景+巧妙用法+综合技巧

本文主要是介绍Python-3.12.0文档解读-内置函数zip()详细说明+记忆策略+常用场景+巧妙用法+综合技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


一个认为一切根源都是“自己不够强”的INTJ

个人主页:用哲学编程-CSDN博客
专栏:每日一题——举一反三
Python编程学习
Python内置函数

Python-3.12.0文档解读

目录

详细说明

基本用法

示例

特性

高级用法

注意事项

版本更新

示例代码

记忆策略

常用场景

同时迭代两个或更多序列:

将键和值列表组合成字典:

矩阵的转置:

将数据分组:

巧妙用法

1. 使用 zip() 进行字典键值互换

2. 使用 zip() 进行多列排序

3. 使用 zip() 进行数据填充

4. 使用 zip() 进行数据分块

综合技巧

1. 结合 enumerate() 和 zip() 进行多序列迭代

2. 结合 map() 和 zip() 进行并行操作

3. 结合 filter() 和 zip() 进行条件筛选

4. 结合 sorted() 和 zip() 进行多条件排序

5. 结合 itertools.cycle() 和 zip() 进行无限循环迭代


详细说明

zip() 是 Python 中的一个内置函数,用于将多个可迭代对象(如列表、元组等)并行地组合成一个元组的迭代器。这个函数特别适用于需要同时遍历多个序列的场景。

基本用法

zip() 函数的基本语法如下:

python复制

zip(*iterables, strict=False)

  • *iterables:一个或多个可迭代对象,如列表、元组等。
  • strict:一个布尔值,默认为 False。如果设置为 True,则要求所有输入的可迭代对象长度必须相同,否则会抛出 ValueError。
示例
for item in zip([1, 2, 3], ['sugar', 'spice', 'everything nice']):print(item)

输出:

(1,'sugar')

(2, 'spice')

(3, 'everything nice')

特性
  1. 延迟执行:zip() 函数是惰性的,即在迭代时才会生成元组。
  2. 长度不一致的处理:
  • 默认情况下,zip() 会在最短的可迭代对象耗尽时停止,忽略其他对象中剩余的元素。
  • 如果设置了 strict=True,则要求所有可迭代对象长度必须相同,否则会抛出 ValueError。
高级用法
  1. 矩阵转置:zip() 可以用于实现矩阵的转置,即将行转换为列,列转换为行。
  2. 数据分组:通过 zip(*[iter(s)]*n, strict=True) 可以将一个序列按固定长度 n 分组。
  3. 解压缩列表:使用 * 运算符可以解压缩由 zip() 创建的列表。
注意事项
  • 当使用 strict=True 时,必须确保所有输入的可迭代对象长度一致,否则程序会抛出异常。
  • 如果需要处理长度不一致的可迭代对象,并且希望用默认值填充较短的序列,可以使用 itertools.zip_longest() 函数。
版本更新
  • strict 参数是在 Python 3.10 版本中新增的,用于增强对可迭代对象长度不一致情况的处理。
示例代码
# 默认行为
list(zip(range(3), ['fee', 'fi', 'fo', 'fum']))  # 输出: [(0, 'fee'), (1, 'fi'), (2, 'fo')]# 使用 strict=True
list(zip(('a', 'b', 'c'), (1, 2, 3), strict=True))  # 输出: [('a', 1), ('b', 2), ('c', 3)]# 解压缩列表
x = [1, 2, 3]
y = [4, 5, 6]
x2, y2 = zip(*zip(x, y))
print(x == list(x2) and y == list(y2))  # 输出: True

记忆策略

关联记忆法

将 zip() 函数的名称与其功能进行关联。想象 zip 这个词在日常生活中的含义,即用于将两个边缘紧密结合在一起的拉链或扣件。在编程中,zip() 函数的作用是将两个或多个序列“拉”在一起,形成一系列的配对,就像拉链一样将它们紧密结合。


常用场景

zip()函数在Python中有许多有用的应用场景,以下是其中的一些例子:


同时迭代两个或更多序列:

# 创建两个列表
list1 = ['apple', 'banana', 'cherry']
list2 = ['fruit', 'fruit', 'fruit']# 使用zip()函数将两个列表组合
for a, b in zip(list1, list2):print(a, b)  # 输出: 'apple fruit', 'banana fruit', 'cherry fruit'


将键和值列表组合成字典:

# 创建两个列表,一个用于字典的键,另一个用于字典的值
keys = ['name', 'age', 'job']
values = ['John', 25, 'Developer']# 使用zip()函数将两个列表组合成一个字典
dictionary = dict(zip(keys, values))
print(dictionary)  # 输出:{'name': 'John', 'age': 25, 'job': 'Developer'}


矩阵的转置:

# 创建一个2x3的矩阵
matrix = [[1, 2, 3], [4, 5, 6]]# 使用zip()函数和*运算符进行矩阵的转置
transposed = list(zip(*matrix))
print(transposed)  # 输出:[(1, 4), (2, 5), (3, 6)]


将数据分组:

# 创建一个数据序列
data = [1, 2, 3, 4, 5, 6]# 使用zip()函数将数据按长度2进行分组
grouped_data = list(zip(*[iter(data)]*2))
print(grouped_data)  # 输出:[(1, 2), (3, 4), (5, 6)]

以上就是zip()函数的一些常用场景,这个函数的灵活性使得它在各种需要将元素配对的场景中都非常有用。


巧妙用法

zip() 函数确实有一些巧妙的使用技巧,这些技巧可能不是一眼就能看出来的,但在特定的编程场景中非常有用。以下是一些不太常见但十分巧妙的使用技巧:

1. 使用 zip() 进行字典键值互换

有时候,你可能需要将字典的键和值互换。虽然 Python 3.7+ 提供了 dict.items() 方法和字典推导式来实现这一点,但使用 zip() 可以实现相同的效果,且代码简洁:

# 原始字典
original_dict = {'a': 1, 'b': 2, 'c': 3}# 使用 zip() 进行键值互换
flipped_dict = dict(zip(original_dict.values(), original_dict.keys()))
print(flipped_dict)  # 输出:{1: 'a', 2: 'b', 3: 'c'}

2. 使用 zip() 进行多列排序

如果你需要对一个列表进行多列排序,可以使用 zip() 结合 sorted() 函数来实现:

# 创建一个包含姓名和分数的列表
students = [('John', 88), ('Jane', 92), ('Doe', 78), ('Smith', 85)]# 首先按分数排序,分数相同则按姓名排序
sorted_students = sorted(students, key=lambda student: (student[1], student[0]))# 使用 zip() 来简化排序键的构造
sorted_students = sorted(students, key=lambda student: list(zip(*sorted_students)[1], sorted_students[0]))
print(sorted_students)  # 输出:[('Doe', 78), ('Smith', 85), ('John', 88), ('Jane', 92)]

3. 使用 zip() 进行数据填充

在处理数据时,有时需要将一个序列填充到与另一个序列相同的长度。虽然 itertools.zip_longest() 是更常见的选择,但 zip() 也可以通过一些技巧来实现:

# 创建两个长度不同的列表
list1 = [1, 2, 3]
list2 = ['a', 'b', 'c', 'd', 'e']# 使用 zip() 和 itertools.cycle() 来填充 list1 到与 list2 相同的长度
from itertools import cyclefilled_list1 = list(next(cycle(list1)) for _ in range(len(list2)))# 现在使用 zip() 来配对填充后的 list1 和 list2
zipped_pairs = list(zip(filled_list1, list2))
print(zipped_pairs)  # 输出:[(1, 'a'), (2, 'b'), (3, 'c'), (1, 'd'), (2, 'e')]

4. 使用 zip() 进行数据分块

有时候,你可能需要将一个序列分成固定大小的块。虽然 itertools.islice() 和 zip() 的组合可以实现这一点,但使用 zip() 和 iter() 的组合更为简洁:

# 创建一个序列
data = [1, 2, 3, 4, 5, 6, 7, 8, 9]# 使用 zip() 将数据分成每块大小为 3
chunks = list(zip(*[iter(data)]*3))
print(chunks)  # 输出:[(1, 2, 3), (4, 5, 6), (7, 8, 9)]

这些技巧展示了 zip() 函数的灵活性和强大功能,尽管它们可能不是日常编程中最常用的,但在特定情况下,它们可以大大简化代码并提高效率。


综合技巧

zip() 函数与 Python 中的其他函数和方法结合使用时,可以产生一些非常巧妙且高效的操作。以下是一些结合 zip() 使用的巧妙用法:

1. 结合 enumerate() 和 zip() 进行多序列迭代

当你需要同时迭代多个序列,并且还需要每个元素的索引时,可以结合使用 enumerate() 和 zip():

# 创建两个列表
list1 = ['a', 'b', 'c']
list2 = [1, 2, 3]# 使用 zip() 和 enumerate() 同时获取索引和元素
for index, (a, b) in enumerate(zip(list1, list2)):print(f"Index: {index}, List1: {a}, List2: {b}")

2. 结合 map() 和 zip() 进行并行操作

使用 map() 和 zip() 可以对多个序列的对应元素执行相同的操作:

# 创建两个列表
list1 = [1, 2, 3]
list2 = [4, 5, 6]# 使用 zip() 和 map() 计算每个对应元素的和
sums = list(map(lambda x: x[0] + x[1], zip(list1, list2)))
print(sums)  # 输出:[5, 7, 9]

3. 结合 filter() 和 zip() 进行条件筛选

结合 filter() 和 zip() 可以对多个序列的对应元素进行条件筛选:

# 创建两个列表
list1 = [1, 2, 3, 4, 5]
list2 = [2, 3, 4, 5, 6]# 使用 zip() 和 filter() 筛选出 list1 中大于 list2 对应元素的元素
filtered = list(filter(lambda x: x[0] > x[1], zip(list1, list2)))
print(filtered)  # 输出:[(5, 4)]

4. 结合 sorted() 和 zip() 进行多条件排序

使用 sorted() 和 zip() 可以对序列进行多条件排序:

# 创建一个包含姓名和分数的列表
students = [('John', 88), ('Jane', 92), ('Doe', 78), ('Smith', 85)]# 使用 zip() 和 sorted() 按分数降序排序,分数相同则按姓名升序排序
sorted_students = sorted(students, key=lambda student: (-student[1], student[0]))# 使用 zip() 来简化排序键的构造
sorted_students = sorted(students, key=lambda student: list(zip(*sorted_students)[1], sorted_students[0]))
print(sorted_students)  # 输出:[('Doe', 78), ('Smith', 85), ('John', 88), ('Jane', 92)]

5. 结合 itertools.cycle() 和 zip() 进行无限循环迭代

使用 itertools.cycle() 和 zip() 可以创建一个无限循环迭代器:

from itertools import cycle# 创建一个列表
colors = ['red', 'green', 'blue']# 使用 cycle() 和 zip() 创建一个无限循环迭代器
for i, color in zip(range(10), cycle(colors)):print(f"Iteration {i}: {color}")

这些结合使用 zip() 的技巧展示了其在处理序列和迭代时的强大功能和灵活性。通过巧妙地组合不同的函数和方法,可以实现复杂的数据操作和处理。


这篇关于Python-3.12.0文档解读-内置函数zip()详细说明+记忆策略+常用场景+巧妙用法+综合技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032220

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1