本文主要是介绍hdu 5458 Stability(树链剖分+强连通缩点+线段树),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接:hdu 5458 Stability
解题思路
先将操作处理一遍,获得最终图,然后对图进行双联通缩点,剩下的肯定是一棵树,然后将操作逆着做一遍,遇到删边等于是加一条边,加的这条边u,v等于是将两节点路径上的点联通起来变成一个新的双联通分量,在同一个双联通分量中,明显ans=0。所以我们用线段树维护树的每条边权,一开始全为1,每次添加一条边,就将这条路径上的边权值置为0。
代码
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <algorithm>using namespace std;
const int maxn = 3 * 1e4 + 5;
const int maxm = 1e5 + 5;
typedef pair<int,int> pii;#define lson(x) ((x)<<1)
#define rson(x) (((x)<<1)|1)namespace SegTree {int lc[maxn<<2], rc[maxn<<2], s[maxn<<2], f[maxn<<2];void maintain(int u, int v) {f[u] = v;s[u] = f[u] * (rc[u] - lc[u] + 1);}void pushup(int u) { s[u] = s[lson(u)] + s[rson(u)]; }void pushdown(int u) {if (f[u] != -1) {maintain(lson(u), f[u]);maintain(rson(u), f[u]);f[u] = -1;}}void build (int u, int l, int r) {lc[u] = l, rc[u] = r, f[u] = -1, s[u] = 1;if (l == r) return;int mid = (l+r)>>1;build(lson(u), l, mid);build(rson(u), mid+1, r);pushup(u);}void modify(int u, int l, int r, int v) {if (l <= lc[u] && rc[u] <= r) {maintain(u, v);return;}pushdown(u);int mid = (lc[u] + rc[u]) >> 1;if (l <= mid) modify(lson(u), l, r, v);if (r > mid) modify(rson(u), l, r, v);pushup(u);}int query(int u, int l, int r) {if (l <= lc[u] && rc[u] <= r)return s[u];pushdown(u);int mid = (lc[u] + rc[u]) >> 1, ret = 0;if (l <= mid) ret += query(lson(u), l, r);if (r > mid) ret += query(rson(u), l, r);pushup(u);return ret;}
};/* 树链剖分*/
namespace TreeChain {int E, first[maxn], jump[maxn<<1], link[maxn<<1];int id, idx[maxn], dep[maxn], top[maxn], far[maxn], son[maxn], cnt[maxn];inline void addEdge(int u, int v) {link[E] = v;jump[E] = first[u];first[u] = E++;}void dfs (int u, int pre, int d) {far[u] = pre;dep[u] = d;cnt[u] = 1;son[u] = 0;for (int i = first[u]; i + 1; i = jump[i]) {int v = link[i];if (v == pre) continue;dfs(v, u, d + 1);cnt[u] += cnt[v];if (cnt[son[u]] < cnt[v])son[u] = v;}}void dfs (int u, int rot) {top[u]= rot;idx[u] = ++id;if (son[u])dfs(son[u], rot);for (int i = first[u]; i + 1; i = jump[i]) {int v = link[i];if (v == far[u] || v == son[u]) continue;dfs(v, v);}}void init (int n, int m, const vector<pii>& edges) {SegTree::build(1, 1, n);int u, v;id = E = 0;memset(first, -1, sizeof(first));for (int i = 0; i < m; i++) {if (edges[i].first == edges[i].second) continue;addEdge(edges[i].first, edges[i].second);}dfs(1, 0, 0);dfs(1, 1);}void modify (int u, int v, int k) {int p = top[u], q = top[v];while (p != q) {if (dep[p] < dep[q]) {swap(p, q);swap(u, v);}SegTree::modify(1, idx[p], idx[u], k);u = far[p];p = top[u];}if (dep[u] > dep[v])swap(u, v);if (u != v)SegTree::modify(1, idx[son[u]], idx[v], k);}int query (int u, int v) {int p = top[u], q = top[v], ret = 0;while (p != q) {if (dep[p] < dep[q]) {swap(p, q);swap(u, v);}ret += SegTree::query(1, idx[p], idx[u]);u = far[p];p = top[u];}if (dep[u] > dep[v])swap(u, v);if (u != v)ret += SegTree::query(1, idx[son[u]], idx[v]);return ret;}
};/* Edge biconneted */
int dfsclock, pre[maxn], iscut[maxm<<1], bccno[maxn], cntbcc;
multiset<pii> chains;
vector<int> G[maxn];
vector<pii> edges;int dfs (int u, int fa) { int lowu = pre[u] = ++dfsclock;for (int i = 0; i < G[u].size(); i++) { int e = G[u][i];int v = edges[e].second;if (!pre[v]) {int lowv = dfs(v, u);lowu = min(lowu, lowv);if (lowv > pre[u]) iscut[e] = iscut[e^1] = 1;} else if (pre[v] < pre[u] && v != fa)lowu = min(lowu, pre[v]);}return lowu;
} void dfs (int u) {bccno[u] = cntbcc;for (int i = 0; i < G[u].size(); i++) { int e = G[u][i];int v = edges[e].second;if (iscut[e] || bccno[v]) continue;dfs(v);}
}void findEdge (int n) {dfsclock = cntbcc = 0;memset(pre, 0, sizeof(pre));memset(iscut, 0, sizeof(iscut));for (int i = 1; i <= n; i++)if (!pre[i]) dfs(i, -1);memset(bccno, 0, sizeof(bccno));for (int i = 1; i <= n; i++)if (!bccno[i]) {++cntbcc;dfs(i);}
} int N, M, Q, T[maxm], U[maxm], V[maxm];
void init () {chains.clear();scanf("%d%d%d", &N, &M, &Q);int u, v;for (int i = 1; i <= M; i++) {scanf("%d%d", &u, &v);if (u > v) swap(u, v);chains.insert(make_pair(u, v));}for (int i = 1; i <= Q; i++) {scanf("%d%d%d", &T[i], &U[i], &V[i]);if (U[i] > V[i]) swap(U[i], V[i]);if (T[i] == 2) continue;multiset<pii>::iterator it = chains.find(make_pair(U[i], V[i]));chains.erase(it);//chains.erase(make_pair(U[i], V[i]));}/* get final graph */edges.clear();for (int i = 1; i <= N; i++) G[i].clear();for (multiset<pii>::iterator i = chains.begin(); i != chains.end(); i++) {int u = i->first, v = i->second;//printf("%d %d\n", u, v);for (int j = 0; j < 2; j++) {edges.push_back(make_pair(u, v));G[u].push_back(edges.size()-1);swap(u, v);}}/* edge biconnected */findEdge(N);for (int i = 0; i < edges.size(); i++) {edges[i].first = bccno[edges[i].first];edges[i].second = bccno[edges[i].second];}sort(edges.begin(), edges.end());int n = unique(edges.begin(), edges.end()) - edges.begin();TreeChain::init(cntbcc, n, edges);
}int main () {int cas;scanf("%d", &cas);for (int kcas = 1; kcas <= cas; kcas++) {init();printf("Case #%d:\n", kcas);vector<int> ans;for (int i = Q; i; i--) {if (T[i] == 1)TreeChain::modify(bccno[U[i]], bccno[V[i]], 0);elseans.push_back(TreeChain::query(bccno[U[i]], bccno[V[i]]));}for (int i = ans.size()-1; i >= 0; i--)printf("%d\n", ans[i]);}return 0;
}
这篇关于hdu 5458 Stability(树链剖分+强连通缩点+线段树)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!