【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量)

本文主要是介绍【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 前言
  • 2. 算法题
    • 2.1_【模板】01背包
    • 2.2_分割等和子集
    • 2.3_目标和
    • 2.4_最后一块石头的重量II

1. 前言

关于 动态规划的理解 与例题,点击👇

【动态规划】C++解决斐波那契模型题目(三步问题、爬楼梯、解码方法…)

有了上面的经验,我们来解下面 01 背包问题

2. 算法题

2.1_【模板】01背包

在这里插入图片描述

思路

  1. 设置状态表示

    • 对于此类背包问题,我们需要考虑的因素往往不止一个,状态表示会根据影响结果的因素而定
    • dp[i][j]:从前i个物品进行选择,所选体积不超过j的最大价值
  2. 写状态转移方程

    在这里插入图片描述

  3. 初始化

    • 虚拟空间一行一列,并初始化为0(因为会用max更新dp值)
  4. 填表的顺序

    • 从上向下 填表即可
  5. 返回值

    • dp[n][V]

代码

#include <iostream>
#include <string>using namespace std;// 定义全局变量 自动初始化为0
const int N = 1001;
int w[N], v[N], n , V; // n个物品 体积为V
int dp[N][N]; // dp数组: 自动初始化为0// 01背包
int main()
{// 读数据cin >> n >> V;for(int i = 1; i <= n; ++i)cin >> v[i] >> w[i];// 第一问// dp[i][j]:从前i个物品进行选择,所选体积不超过j的最大价值for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i-1][j]; // 不选i物品if(j >= v[i])dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);    }cout << dp[n][V] << endl;// 第二问// 初始化dpfor(int j = 1; j <= V; ++j) dp[0][j] = -1; // -1表示无效选法// 填表for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i-1][j]; // 不选i物品if(j >= v[i] && dp[i-1][j-v[i]] != -1)dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);    }cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}

2.2_分割等和子集

在这里插入图片描述

思路

  • 题意分析
    • 题目要求判断是否可以将数组分割成两个元素和相同的子集,即每个子集的元素和为sum(数组总和) / 2
    • 我们可以对题目进行转化,即只要能在数组中找到子集使其和为sum/2,那么就一定有另一个和自己元素和相同的子集
    • 即在数组中找到和为sum/2的元素选法个数,即01背包
  1. 设置状态表示

    • 根据题目,要求判断是否可以将数组分割,所以dp表类型设置为bool
    • dp[i][j]:以i为结尾的子数组中所有的选法中,是否有总和为j的
  2. 写状态转移方程
    在这里插入图片描述

  3. 初始化
    在这里插入图片描述

  4. 填表的顺序

    • 从上向下填写每行
  5. 返回值

    • dp[n][sum/2]

代码

class Solution {
public:bool canPartition(vector<int>& nums) {// 题目转化:找数,使和为sum/2int sum = 0, n = nums.size();for(auto num : nums)    sum += num; // 数组和if(sum % 2 == 1)    return false; // 奇数,不能分割int aim = sum / 2;// 创建dp数组:dp[i][j]: 以i为结尾的子数组中,总和是否为jvector<vector<bool>> dp(n+1, vector<bool>(aim+1));// 初始化 + 填表for(int i = 0; i <= n; ++i) dp[i][0] = true;for(int i = 1; i <= n; ++i)for(int j = 1; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i位置数if(j >= nums[i-1]) // 映射下标dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

2.3_目标和

在这里插入图片描述

思路

  • 题意分析
    • 根据题目,即由x个正数与y个负数可以组成目标值target
    • 那么有:x - y = target,x + y = sum(数组和)
    • 则 x = (target + sum) / 2
    • 此时题目可以理解成,从数组中选择数,数的总和为x,求总共的选法,即01背包:
  1. 设置状态表示
    • dp[i][j]:以i为结尾的子数组中和为j的选法的个数
  2. 写状态转移方程
    • 可以看出本题与上题的总体差别不大,根据状态表示的不同,状态转移方程和初始化进行简单改动:

在这里插入图片描述

  1. 初始化

    • 只需要初始化第一行,dp[0][0] = 0,dp[0][j] = 1(j >= 1)
  2. 填表的顺序

    • 从上向下
  3. 返回值

    • dp[n][aim]

代码

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {// 题目转化:从数组中选择一些数,使其和为目标值,求选法的个数int n = nums.size(), sum = 0; // 数组和for(auto x : nums) sum += x;// a: 正数和    b: 负数和(绝对值)// a + b = sum; a - b = targetint aim = (sum + target) / 2; if(aim < 0 || (sum + target) % 2 == 1) return 0; // 处理边界条件// 创建 + 初始化vector<vector<int>> dp(n+1, vector<int>(aim + 1));dp[0][0] = 1;for(int i = 1; i <= n; ++i)for(int j = 0; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i位置数if(j >= nums[i-1]) dp[i][j] += dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

2.4_最后一块石头的重量II

在这里插入图片描述

思路

  • 题意分析
    • 观察题目,石头碰撞的过程实际就是,两个数相减的过程;
    • 要想使最后的重量最小,只需要在数组中找到序列总和尽可能接近sum/2,此时与剩下的相减的值就是最小的
    • 即转化为了01背包问题;
  1. 设置状态表示

    • dp[i][j]:以i为结尾的子数组中,总和不大于j的最大和(<=j)
  2. 写状态转移方程

    在这里插入图片描述

  3. 初始化

    • 初始化第一行为0
  4. 填表的顺序

    • 从上往下
  5. 返回值

    • sum - (2*dp[n][sum / 2])

代码

int lastStoneWeightII(vector<int>& stones) {// 题目转化为: 在数组中选数,使其总和最接近sum/2int sum = 0, n = stones.size();for(auto x : stones) sum += x;int aim = sum / 2;// 创建dp数组: dp[i][j]:从前i个数中选数,使其和最接近j时的值vector<vector<int>> dp(n+1, vector<int>(aim+1));for(int i = 1; i <= n; ++i)for(int j = 0; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i数if(j >= stones[i-1]) dp[i][j] = max(dp[i-1][j], dp[i-1][j-stones[i-1]] + stones[i-1]);}return sum - 2*dp[n][aim];}

这篇关于【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030277

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

解决idea启动项目报错java: OutOfMemoryError: insufficient memory

《解决idea启动项目报错java:OutOfMemoryError:insufficientmemory》:本文主要介绍解决idea启动项目报错java:OutOfMemoryError... 目录原因:解决:总结 原因:在Java中遇到OutOfMemoryError: insufficient me

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav