【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量)

本文主要是介绍【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 前言
  • 2. 算法题
    • 2.1_【模板】01背包
    • 2.2_分割等和子集
    • 2.3_目标和
    • 2.4_最后一块石头的重量II

1. 前言

关于 动态规划的理解 与例题,点击👇

【动态规划】C++解决斐波那契模型题目(三步问题、爬楼梯、解码方法…)

有了上面的经验,我们来解下面 01 背包问题

2. 算法题

2.1_【模板】01背包

在这里插入图片描述

思路

  1. 设置状态表示

    • 对于此类背包问题,我们需要考虑的因素往往不止一个,状态表示会根据影响结果的因素而定
    • dp[i][j]:从前i个物品进行选择,所选体积不超过j的最大价值
  2. 写状态转移方程

    在这里插入图片描述

  3. 初始化

    • 虚拟空间一行一列,并初始化为0(因为会用max更新dp值)
  4. 填表的顺序

    • 从上向下 填表即可
  5. 返回值

    • dp[n][V]

代码

#include <iostream>
#include <string>using namespace std;// 定义全局变量 自动初始化为0
const int N = 1001;
int w[N], v[N], n , V; // n个物品 体积为V
int dp[N][N]; // dp数组: 自动初始化为0// 01背包
int main()
{// 读数据cin >> n >> V;for(int i = 1; i <= n; ++i)cin >> v[i] >> w[i];// 第一问// dp[i][j]:从前i个物品进行选择,所选体积不超过j的最大价值for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i-1][j]; // 不选i物品if(j >= v[i])dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);    }cout << dp[n][V] << endl;// 第二问// 初始化dpfor(int j = 1; j <= V; ++j) dp[0][j] = -1; // -1表示无效选法// 填表for(int i = 1; i <= n; ++i)for(int j = 1; j <= V; ++j){dp[i][j] = dp[i-1][j]; // 不选i物品if(j >= v[i] && dp[i-1][j-v[i]] != -1)dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);    }cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}

2.2_分割等和子集

在这里插入图片描述

思路

  • 题意分析
    • 题目要求判断是否可以将数组分割成两个元素和相同的子集,即每个子集的元素和为sum(数组总和) / 2
    • 我们可以对题目进行转化,即只要能在数组中找到子集使其和为sum/2,那么就一定有另一个和自己元素和相同的子集
    • 即在数组中找到和为sum/2的元素选法个数,即01背包
  1. 设置状态表示

    • 根据题目,要求判断是否可以将数组分割,所以dp表类型设置为bool
    • dp[i][j]:以i为结尾的子数组中所有的选法中,是否有总和为j的
  2. 写状态转移方程
    在这里插入图片描述

  3. 初始化
    在这里插入图片描述

  4. 填表的顺序

    • 从上向下填写每行
  5. 返回值

    • dp[n][sum/2]

代码

class Solution {
public:bool canPartition(vector<int>& nums) {// 题目转化:找数,使和为sum/2int sum = 0, n = nums.size();for(auto num : nums)    sum += num; // 数组和if(sum % 2 == 1)    return false; // 奇数,不能分割int aim = sum / 2;// 创建dp数组:dp[i][j]: 以i为结尾的子数组中,总和是否为jvector<vector<bool>> dp(n+1, vector<bool>(aim+1));// 初始化 + 填表for(int i = 0; i <= n; ++i) dp[i][0] = true;for(int i = 1; i <= n; ++i)for(int j = 1; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i位置数if(j >= nums[i-1]) // 映射下标dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

2.3_目标和

在这里插入图片描述

思路

  • 题意分析
    • 根据题目,即由x个正数与y个负数可以组成目标值target
    • 那么有:x - y = target,x + y = sum(数组和)
    • 则 x = (target + sum) / 2
    • 此时题目可以理解成,从数组中选择数,数的总和为x,求总共的选法,即01背包:
  1. 设置状态表示
    • dp[i][j]:以i为结尾的子数组中和为j的选法的个数
  2. 写状态转移方程
    • 可以看出本题与上题的总体差别不大,根据状态表示的不同,状态转移方程和初始化进行简单改动:

在这里插入图片描述

  1. 初始化

    • 只需要初始化第一行,dp[0][0] = 0,dp[0][j] = 1(j >= 1)
  2. 填表的顺序

    • 从上向下
  3. 返回值

    • dp[n][aim]

代码

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {// 题目转化:从数组中选择一些数,使其和为目标值,求选法的个数int n = nums.size(), sum = 0; // 数组和for(auto x : nums) sum += x;// a: 正数和    b: 负数和(绝对值)// a + b = sum; a - b = targetint aim = (sum + target) / 2; if(aim < 0 || (sum + target) % 2 == 1) return 0; // 处理边界条件// 创建 + 初始化vector<vector<int>> dp(n+1, vector<int>(aim + 1));dp[0][0] = 1;for(int i = 1; i <= n; ++i)for(int j = 0; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i位置数if(j >= nums[i-1]) dp[i][j] += dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

2.4_最后一块石头的重量II

在这里插入图片描述

思路

  • 题意分析
    • 观察题目,石头碰撞的过程实际就是,两个数相减的过程;
    • 要想使最后的重量最小,只需要在数组中找到序列总和尽可能接近sum/2,此时与剩下的相减的值就是最小的
    • 即转化为了01背包问题;
  1. 设置状态表示

    • dp[i][j]:以i为结尾的子数组中,总和不大于j的最大和(<=j)
  2. 写状态转移方程

    在这里插入图片描述

  3. 初始化

    • 初始化第一行为0
  4. 填表的顺序

    • 从上往下
  5. 返回值

    • sum - (2*dp[n][sum / 2])

代码

int lastStoneWeightII(vector<int>& stones) {// 题目转化为: 在数组中选数,使其总和最接近sum/2int sum = 0, n = stones.size();for(auto x : stones) sum += x;int aim = sum / 2;// 创建dp数组: dp[i][j]:从前i个数中选数,使其和最接近j时的值vector<vector<int>> dp(n+1, vector<int>(aim+1));for(int i = 1; i <= n; ++i)for(int j = 0; j <= aim; ++j){dp[i][j] = dp[i-1][j]; // 不选i数if(j >= stones[i-1]) dp[i][j] = max(dp[i-1][j], dp[i-1][j-stones[i-1]] + stones[i-1]);}return sum - 2*dp[n][aim];}

这篇关于【动态规划】C++解决01背包问题(模板01背包、分割等和子集、目标和、最后一块石头的重量)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030277

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出