通过hmmlearn学习使用GaussianHMM高斯隐马尔科夫模型模型

2024-06-04 12:48

本文主要是介绍通过hmmlearn学习使用GaussianHMM高斯隐马尔科夫模型模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

HMM主要解决的三个问题。
假设隐藏状态序列和观测状态序列分别使用Z和X表示,则解决的3个问题可表示为:
1.解码问题:已知模型参数和X,估计最可能的Z;维特比算法
2.概率问题:已知模型参数和X,估计X出现的概率;向前-向后算法
3.学习问题:仅给出X和隐藏层个数,估计模型参数。 B-W算法,通常是经过一定数量的训练以后,得到模型,然后解决问题1和2。
小贴士:
使用隐马尔可夫如何实现分类或者聚类?
设置一个得分阈值T,例如T属于(-1000,0),步长为100,然后迭代计算准确率和召回率,取出现准确率和召回率最好情况的阈值T作为分类,聚类判定点。

下面代码使用GaussianHMM,解决问题3的例子:

#coding=utf-8
'''
Created on 2018-1-22@author: 10205025
'''
import numpy as np
from hmmlearn import hmm# 这里假设隐藏层数量为5个    
model = hmm.GaussianHMM(n_components=5, n_iter=1000, tol=0.01,covariance_type="full")X1 = np.array([[2], [1],[0]])
X2 = np.array([[2], [1],[0],[2]])
X3 = np.array([[2], [1],[1]])
X4 = np.array([[2], [1],[0]])
X5 = np.array([[1], [2],[0]])X = np.vstack((X1,X2,X3,X4,X5))
print X
# [[2]
#  [1]
#  [0]
#  [2]
#  [1]
#  [0]
#  [2]
#  [2]
#  [1]
#  [1]
#  [2]
#  [1]
#  [0]
#  [1]
#  [2]
#  [0]]# 这里分别为X1,X2,X3,X4,X5的长度
X_lens = [3,4,3,3,3]
model.fit(X,X_lens)# 转换矩阵
print model.transmat_
# [[  4.90994062e-267   8.00000000e-001   1.00000000e-001   1.00000000e-001
#     4.90994062e-267]
#  [  1.00000000e-001   2.00000000e-001   3.00000000e-001   3.00000000e-001
#     1.00000000e-001]
#  [  5.00000000e-001   3.59090699e-133   2.80458184e-133   2.80458184e-133
#     5.00000000e-001]
#  [  5.00000000e-001   3.59090699e-133   2.80458184e-133   2.80458184e-133
#     5.00000000e-001]
#  [  4.90994062e-267   8.00000000e-001   1.00000000e-001   1.00000000e-001
#     4.90994062e-267]]# 正常的序列
test1 = np.array([[2, 1,0,2,1,0]]).T
print test1
# [[2]
#  [1]
#  [0]
#  [2]
#  [1]
#  [0]]
score = model.score(test1)
print score
# 10.1943163957# 不正常的序列
test2 = np.array([[2, 1,0,2,1,0,3]]).T
print test2
# [[2]
#  [1]
#  [0]
#  [2]
#  [1]
#  [0]
#  [3]]
score = model.score(test2)
print score
# -137.8727309

这篇关于通过hmmlearn学习使用GaussianHMM高斯隐马尔科夫模型模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030126

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意