自然语言处理:第三十二章HippoRAG:性能提高20% - 受海马体启发的RAG

本文主要是介绍自然语言处理:第三十二章HippoRAG:性能提高20% - 受海马体启发的RAG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章链接: HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models

项目地址: OSU-NLP-Group/HippoRAG: HippoRAG is a novel RAG framework inspired by human long-term memory that enables LLMs to continuously integrate knowledge across external documents. (github.com)





人们总能类人的方法上找到突破口,从CNN 到 RNN 再到attention。这次又到了海马体。

摘要

HippoRAG,这是一种由斯坦福大学联合发布的新颖的检索框架,灵感来源于人类长期记忆的海马索引理论。HippoRAG结合了大型语言模型(LLMs)、知识图谱和个性化PageRank算法,以模拟人类记忆中新皮层和海马的不同角色。通过这种方法,HippoRAG能够在新体验中更深入、更高效地整合知识。我们比较了HippoRAG与现有检索增强生成(RAG)方法在多跳问题回答上的性能,结果表明HippoRAG显著优于现有最先进方法,最高提升了20%。此外,HippoRAG的单步检索在成本和速度上都大大优于迭代检索方法(比如说IRCoT),同时还能处理现有方法无法触及的新类型场景。



背景

哺乳动物大脑经过数百万年的进化,发展出了存储大量世界知识并在不断整合新体验的同时避免灾难性遗忘的能力。然而,尽管大型语言模型(LLMs)取得了令人印象深刻的成就,但它们在预训练后仍然难以有效地整合大量新体验。现有的RAG方法无法帮助LLMs执行跨段落边界整合新知识的任务,因为每个新段落都是孤立编码的。HippoRAG的设计灵感来源于海马记忆索引理论,该理论认为人类的强大上下文记忆依赖于新皮层和海马之间的交互。

HippoRAG的主要亮点包括:

  • 单步多跳检索:HippoRAG能够在单次检索中执行多跳推理,这是通过模仿大脑的关联记忆能力实现的,相较于现有RAG方法显著提高了性能, 最高可达20%
  • 效率和成本:与迭代检索方法相比,HippoRAG在在线检索过程中成本更低,速度更快。HippoRAG的单步检索在成本上节 省10-30倍 ,在速度上快 6-13倍 ,并且与IRCoT结合使用可以带来进一步的显著增益。
  • 处理新场景:HippoRAG能够处理现有方法无法解决的新类型场景,这表明了其在知识整合方面的潜力。


核心算法

在这里插入图片描述

HippoRAG的核心算法包括以下几个关键步骤:

  1. 离线索引(offline indexing):使用指令调整的大型语言模型(LLM)作为人工新皮层,通过开放信息提取(OpenIE)从检索语料库中的段落中提取知识图谱(KG)三元组。
    • 新皮层模拟:使用一个指令调整的大型语言模型(LLM),作为人工新皮层,通过开放信息提取(OpenIE)从文档集合中提取知识图谱(KG)三元组。这一过程被称为开放信息提取,它从文档中提取名词短语作为离散信号,而不是密集的向量表示,从而实现更细粒度的模式分离。
    • 知识图谱构建:构建的KG是无模式的(schemaless),允许更灵活的模式分离和新信息整合。
    • 海马索引构建:使用标准的检索编码器(retrieval encoders),这些编码器为KG中的相似但不完全相同的名词短语提供额外的边,帮助下游的模式完成。
  2. 在线检索:使用相同的三个组件执行在线检索,模拟人脑的记忆检索过程。LLM基础的新皮层从查询中提取一组显著的命名实体,这些命名实体与KG中的节点基于检索编码器确定的相似性相连。LLM新皮质从查询中提取命名实体,而海马旁回检索编码器将它们链接到我们的海马体索引。然后我们利用个性化PageRank(PPR)算法:利用PPR算法在KG上运行,使用查询概念作为种子,整合跨段落的信息进行检索。来实现基于上下文的检索,并提取最后的答案。
    • 查询处理:LLM基于新皮层从查询中提取一组显著的命名实体(query named entities),这些实体随后通过检索编码器与KG中的节点链接。
    • 模式完成:选定的查询节点成为部分线索,人工海马体执行模式完成,通过个性化PageRank(PPR)算法在KG上运行,使用查询概念作为种子,整合跨文档的信息进行检索。
    • 个性化PageRank(PPR):PPR算法是一种PageRank的变体,它只通过一组用户定义的源节点(即查询节点)在图中分布概率。这使得PPR输出只偏向于查询节点集,模仿海马体从特定部分线索中提取相关信号。

在这里插入图片描述




结果

单步检索性能。 HippoRAG在MuSiQue和2WikiMultiHopQA上的表现超过了所有基线,并且在挑战性较小的HotpotQA数据集上达到了可比的性能。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

**在多跳问题回答(QA)**基准测试中,HippoRAG在MuSiQue和2WikiMultiHopQA数据集上的表现显著优于现有RAG方法,提升了大约3%到20%。此外,HippoRAG的在线检索过程比现有的迭代检索方法如IRCoT快6到13倍,同时成本降低了10到30倍。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

成本与速度评测

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传




总结

HippoRAG作为一种新型的RAG框架,通过模仿人类记忆中新皮层和海马的交互,提供了一种强大的长期记忆解决方案。它在多跳QA任务上展现出卓越的性能,特别是在单步多跳检索和处理新场景方面。尽管HippoRAG在某些方面仍有改进空间,但其目前的表现已经证明了它作为一种有前景的方法,能够推动大型语言模型在理解和整合知识方面的发展。

这篇关于自然语言处理:第三十二章HippoRAG:性能提高20% - 受海马体启发的RAG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029919

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir