群体优化算法---鲸鱼优化算法应用于电力系统优化

2024-06-04 08:28

本文主要是介绍群体优化算法---鲸鱼优化算法应用于电力系统优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种基于鲸鱼行为的智能优化算法,由Seyedali Mirjalili等人于2016年提出。WOA受鲸鱼捕食行为的启发,尤其是座头鲸的气泡网捕食策略,模拟了鲸鱼围绕猎物游动和创造气泡网的过程。该算法在解决各种优化问题中显示出了良好的性能,应用广泛

鲸鱼优化算法的基本原理

WOA主要包括三个阶段:
围绕猎物游动:鲸鱼沿着一种螺旋状路径围绕猎物游动,模拟了座头鲸捕食的行为。
气泡网捕食策略:这是鲸鱼的主要捕食策略,利用气泡网围住猎物。WOA通过不断更新位置来模拟这一过程。
搜索猎物:当无法确定猎物的位置时,鲸鱼会进行广泛搜索,确保不会陷入局部最优解。

主要步骤
初始化:随机生成一群鲸鱼的位置。
计算适应度:评估每只鲸鱼当前位置的适应度。
更新位置:根据捕食策略更新鲸鱼的位置,包括围绕猎物游动和气泡网捕食。
迭代:重复计算适应度和更新位置,直到满足终止条件(如达到最大迭代次数或适应度收敛)。

算法流程图
1.初始化鲸鱼群体和参数。
2.计算每只鲸鱼的适应度。
3.更新位置:
∣ A ∣ < 1 |A| < 1 A<1,则更新为围绕猎物游动。
∣ A ∣ ≥ 1 |A| \geq 1 A1,则进行广泛搜索。
4.检查终止条件:
若满足终止条件,输出最佳解。
否则,返回步骤2。

本文示例

电力经济调度问题涉及到根据负载需求,优化发电机组的输出功率,以最小化总发电成本,同时满足系统的功率平衡和各发电机的运行限制

代码

function WOA_ELD% 参数设置dim = 6; % 问题的维度(发电机组数量)lb = [10, 10, 35, 35, 130, 125]; % 每个发电机组的最小功率输出ub = [85, 80, 125, 130, 200, 175]; % 每个发电机组的最大功率输出SearchAgents_no = 30; % 搜索代理数量Max_iter = 500; % 最大迭代次数Pd = 700; % 总负载需求% 发电成本系数(a, b, c)cost_coeff = [0.007, 7, 240; 0.0095, 10, 200; 0.009, 8.5, 220; 0.009, 11, 200; 0.008, 10.5, 220; 0.0075, 12, 120];% 初始化鲸鱼群体X = initialization(SearchAgents_no, dim, ub, lb);Leader_pos = zeros(1, dim); % 领导者的位置Leader_score = inf; % 领导者的得分% 迭代过程for t = 1:Max_itera = 2 - t * (2 / Max_iter); % 线性下降的afor i = 1:size(X, 1)% 约束处理X(i, :) = max(X(i, :), lb);X(i, :) = min(X(i, :), ub);% 计算适应度fitness = calculate_fitness(X(i, :), cost_coeff, Pd);% 更新领导者if fitness < Leader_scoreLeader_score = fitness;Leader_pos = X(i, :);endend% 更新位置for i = 1:size(X, 1)r1 = rand(); % r1为[0,1]之间的随机数r2 = rand(); % r2为[0,1]之间的随机数A = 2 * a * r1 - a; % 计算AC = 2 * r2; % 计算Cp = rand(); % p为[0,1]之间的随机数if p < 0.5if abs(A) < 1D = abs(C * Leader_pos - X(i, :)); % 计算DX(i, :) = Leader_pos - A * D; % 更新位置elserand_leader_index = floor(SearchAgents_no * rand() + 1);X_rand = X(rand_leader_index, :);D = abs(C * X_rand - X(i, :)); % 计算DX(i, :) = X_rand - A * D; % 更新位置endelse% 定义b和lb = 1; % 螺旋常数l = (2 * rand() - 1); % 在[-1, 1]之间的随机数distance2Leader = abs(Leader_pos - X(i, :));X(i, :) = distance2Leader * exp(b * l) * cos(l * 2 * pi) + Leader_pos;endendend% 显示结果disp(['最佳解:', num2str(Leader_pos)]);disp(['最小成本:', num2str(Leader_score)]);function fitness = calculate_fitness(position, cost_coeff, Pd)Ptotal = sum(position);if Ptotal ~= Pdpenalty = 1e10 * abs(Ptotal - Pd);elsepenalty = 0;endfitness = sum(cost_coeff(:, 1) .* position.^2 + cost_coeff(:, 2) .* position + cost_coeff(:, 3)) + penalty;endfunction Positions = initialization(SearchAgents_no, dim, ub, lb)Boundary_no = size(ub, 2);Positions = zeros(SearchAgents_no, dim);for i = 1:SearchAgents_nofor j = 1:dimub_i = ub(j);lb_i = lb(j);Positions(i, j) = rand() * (ub_i - lb_i) + lb_i;endendend
end

说明

参数设置:定义了发电机组的数量、功率输出上下限、搜索代理数量、最大迭代次数和总负载需求。
初始化:随机初始化鲸鱼群体的位置。
计算适应度:通过计算每个位置的发电成本来评估适应度,并添加功率平衡的惩罚项。
位置更新:根据WOA的捕食策略更新每个鲸鱼的位置。
显示结果:输出最佳解和最小发电成本

效果

在这里插入图片描述

这篇关于群体优化算法---鲸鱼优化算法应用于电力系统优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1029563

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1