秋招突击——算法打卡——6/3——复习{最低通行费、(状态压缩DP)小国王}——新做:{罗马数字转整数、最长公共前缀}

本文主要是介绍秋招突击——算法打卡——6/3——复习{最低通行费、(状态压缩DP)小国王}——新做:{罗马数字转整数、最长公共前缀},希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 复习
      • 背包模型——最低通行费
        • 题目内容
        • 实现代码
      • (状态压缩DP)小国王
        • 检查状态本身是否存在两个连续的1
        • 计算所有的合法状态已经所有合法状态之间的转移
        • 动态规划过程
    • 新作
      • 罗马数字转整数
        • 个人实现
          • 实现代码
        • 参考做法
          • 实现代码
      • 最长公共前缀
        • 个人实现
        • 参考思路
    • 总结

复习

背包模型——最低通行费

题目内容

在这里插入图片描述

实现代码
  • 首先规定了步数是2n-1,相当于只能往右下那个方向出发,只能往下或者往右走
  • 最小花费,那么f[i][j],就表示到达第i和j的格子中若干方案中最低的代码。
  • 完全可以使用动态规划,但是边界条件确定还是有点问题,并不知道怎么弄。
    • 真牛,我还不确定这样写对不对,结果跟参考代码写的一模一样。
    • 就是从最初的那个单元格进行遍历,发现有一个单元格始终是空的,所以就对那个单元格进行赋值就行了,然后再往下继续便利赋值即可。
#include <iostream>
#include <algorithm>using namespace std;
const int N = 110;
int w[N][N],f[N][N];
int n;
int main(){cin>>n;// 记录矩阵信息for (int i = 1; i <= n ; ++i) {for (int j = 0; j <= n ; ++j) {cin>>w[i][j];}}// 根据状态转换方程进行变动  f[i][j] = max(f[i - 1][j],f[i][j - 1]) + w[i][j]for (int i = 1; i <= n; ++i) {for (int j = 1; j <= n; ++j) {if (i == 1 && j == 1)   f[i][j] = w[i][j];else f[i][j] = INT_MAX;if (i - 1 >= 0) f[i][j] = min(f[i][j],f[i -1][j]) + w[i][j];if (j - 1 >= 0) f[i][j] = min(f[i][j],f[i][j - 1]) + w[i][j];}}cout<<f[n][n]<< endl;
}

(状态压缩DP)小国王

  • 上半场题解链接
  • 上次讲到要验证状态是否合法,所以需要写一下状态合法的判定情况,然后在计算一下有哪些状态是合法,那些状态转换是合法的。
检查状态本身是否存在两个连续的1
  • 实际上可以使用错位相与,不等于零就是错的
bool check(int state){// 检查是否存在连续的两个一,如果存在就是不合法for(int i = 0;i < n;i ++)if ((state >> i & 1) && (state >> i + 1 & 1))return false;return true;
}

请添加图片描述

  • 可以改成如下形式
bool check(int state){// 检查是否存在连续的两个一,如果存在就是不合法return !(state & (state  >> 1));
//    for(int i = 0;i < n;i ++)
//        if ((state >> i & 1) && (state >> (i + 1) & 1))
//            return false;
//    return true;
}
计算所有的合法状态已经所有合法状态之间的转移
  • 这里每一行有n个格子,每一个格子是两种状态,相当于是2的n次方,所以移位运算就是乘以2倍数。遍历所有状态就是可以的。
  • 这里判定两个状态是否是合法,需要好好画一下图,具体如下
    • a:100101
    • b:010000
    • 按位或:110101,如果他出现相邻的1,就是不合格的状态,所以需要进行判定。
// 这里是遍历所有的情况,并将所有的状态保存起来for (int i = 0; i < 1 << n; ++i) {if (check(i)){state.push_back(i);id[i] = state.size() - 1; // 存储每一个合法状态的坐标cnt[i] = count(i); // 计算当前合法状态中1的个数,也就是国王的个数}}
// 这里是相邻两种状态能不能实现转移的判定条件,就是相同的位置不能为一,交叉位置不能为1.for (int i = 0; i < state.size(); ++i) {for (int j = 0; j < state.size(); ++j) {int a = state[i], b = state[j];  // 统计两个合法状态if ((a & b) == 0 && check(a | b))   // 不能有交集,并且不能有斜插head[a].push_back(b);   // 保存a所有能够转移的合法的b的状态}}
动态规划过程
  • 需要理解这个动态规划的坐标f[i][j][k]
    • i:表示第i行
    • j:表示总共放j个国王
    • k:表示第k个状态
f[0][0][0] = 1;
// 这里是总共有n行,然后逐行进行遍历
for (int i = 1; i <= n + 1; ++i) {// 假设一开始是要求放j个国王for (int j = 0; j <= m ; ++j) {// 遍历当前位置所有的合法情况for (int a = 0; a < state.size(); ++a) {// 遍历当前位置的所有合法情况for (int b:head[a]) {int c = cnt[state[a]];if (j >= c){f[i][j][a] += f[i - 1][j - c][b];}}}}
}cout<<f[n + 1][m][0];

新作

罗马数字转整数

题目链接

个人实现
  • 数字转罗马,就是中等,从罗马转数字,就是中等
  • 正常进行遍历,遇到不同的数字进行不同的操作
    • 特殊情况,如果右边的数字比左边的大,那就执行特殊情况,想减
实现代码
  • 不知道如何往unordered_map中添加多个元素
方法一:std::unordered_map<std::string, int> umap;// 使用insert方法和initializer_list一次性添加多个元素umap.insert({{"one", 1},{"two", 2},{"three", 3}});方法二:std::unordered_map<std::string, int> umap = {{"one", 1},{"two", 2},{"three", 3}};
  • string.at返回的是string还是char?
    • 返回的是char型数据

在这里插入图片描述

#include <iostream>
#include <string>
#include <unordered_map>using namespace std;int romanToInt(string s){unordered_map<char ,int> rep;rep['I'] = 1;rep['V'] = 5;rep['X'] = 10;rep['L'] = 50;rep['C'] = 100;rep['D'] = 500;rep['M'] = 1000;int res = 0;for (int i = 0; i < s.size(); ++i) {res += rep[s[i]];if (i + 1 < s.size()){if (s.substr(i,2) == "IV" || s.substr(i,2) == "IX")res -= 2;if (s.substr(i,2) == "Xl" || s.substr(i,2) == "XC")res -= 20;if (s.substr(i,2) == "CD" || s.substr(i,2) == "CM")res -= 200;}}return res;
}int main(){cout<<romanToInt("MMMXLV");
}
参考做法
  • 这里是判定,当前数字是大于等于下一个数字,就是默认直接替换,如果小于,那就减去当前的数字,具体实现方式如下
实现代码
#include <iostream>
#include <string>
#include <unordered_map>using namespace std;int romanToInt(string s){unordered_map<char ,int> rep = {{'I',1},{'V',5},{'X',10},{'L',50},{'C',100},{'D',500},{'M',1000}};int res = 0;for (int i = 0; i < s.size(); ++i) {if (i + 1 < s.size() && s[i] < s[i + 1])res -= rep[i];else res += rep[i];}return res;
}int main(){cout<<romanToInt("MMMXLV");
}

最长公共前缀

题目链接

  • 一看就知道是动态规划,那是最长公共子序列
个人实现
  • 具体一看,这道题并不是动态规划,应该是简单版的,直接遍历就行了,具体实现代码如下
    • 直接那第一个字符串,然后遍历第一个字符串的所有字符,然后和后续所有的字符串比较,相同跳过,不同直接突出,返回。如果是自然到末尾,就是需要加一。
class Solution {
public:string longestCommonPrefix(vector<string>& s) {if (s.size() == 1) return s[0];int r = 0;bool flag = true;for(int i = 0;i < s[0].size();i ++){r = i;for(int j = 1;j < s.size();j ++){if(i < s[j].size() && s[0][i] == s[j][i])continue;else{flag = false;break;}}if(!flag)   break;}if (flag)return s[0].substr(0,r + 1);elsereturn s[0].substr(0,r);}
};
参考思路
  • 思路是一样的,但是他的代码比我的简洁,是这样的,直接遍历所有的i,然后获取第一个字符串的i,然后在判定其他的,相同再加上去,不同的话,直接返回
class Solution {
public:string longestCommonPrefix(vector<string>& s) {if (s.size() == 1) return s[0];string r;for (int i = 0; ; ++i) {if (i >= s[0].size())   return r;char t = s[0][i];for (int j = 1; j < s.size(); ++j) {if (t != s[j][i])   return r;}r += t;}}
};

在这里插入图片描述

总结

  • 今天这道题DP问题就花了很多时间,完全就没有必要,所以下次还是规定一下时间超过了,就明天再来。
  • 今天两道简单题,还行。

这篇关于秋招突击——算法打卡——6/3——复习{最低通行费、(状态压缩DP)小国王}——新做:{罗马数字转整数、最长公共前缀}的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029562

相关文章

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Qt实现文件的压缩和解压缩操作

《Qt实现文件的压缩和解压缩操作》这篇文章主要为大家详细介绍了如何使用Qt库中的QZipReader和QZipWriter实现文件的压缩和解压缩功能,文中的示例代码简洁易懂,需要的可以参考一下... 目录一、实现方式二、具体步骤1、在.pro文件中添加模块gui-private2、通过QObject方式创建

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系