Datacamp 笔记代码 Unsupervised Learning in Python 第一章 Clustering for dataset exploration

本文主要是介绍Datacamp 笔记代码 Unsupervised Learning in Python 第一章 Clustering for dataset exploration,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多原始数据文档和JupyterNotebook
Github: https://github.com/JinnyR/Datacamp_DataScienceTrack_Python

Datacamp track: Data Scientist with Python - Course 23 (1)

Exercise

Clustering 2D points

From the scatter plot of the previous exercise, you saw that the points seem to separate into 3 clusters. You’ll now create a KMeans model to find 3 clusters, and fit it to the data points from the previous exercise. After the model has been fit, you’ll obtain the cluster labels for some new points using the .predict() method.

You are given the array points from the previous exercise, and also an array new_points.

Instruction

  • Import KMeans from sklearn.cluster.
  • Using KMeans(), create a KMeans instance called model to find 3 clusters. To specify the number of clusters, use the n_clusters keyword argument.
  • Use the .fit() method of model to fit the model to the array of points points.
  • Use the .predict() method of model to predict the cluster labels of new_points, assigning the result to labels.
  • Hit ‘Submit Answer’ to see the cluster labels of new_points.
import pandas as pddf = pd.read_csv('https://s3.amazonaws.com/assets.datacamp.com/production/course_2072/datasets/3-point-clouds-in-2d.csv', header=None)
data = df.values
N = 300
points = data[:N,:]
new_points = data[N:,:]
# Import KMeans
from sklearn.cluster import KMeans# Create a KMeans instance with 3 clusters: model
model = KMeans(n_clusters=3)# Fit model to points
model.fit(points)# Determine the cluster labels of new_points: labels
labels = model.predict(new_points)# Print cluster labels of new_points
print(labels)
[0 2 1 0 2 0 2 2 2 1 0 2 2 1 1 2 1 1 2 2 1 2 0 2 0 1 2 1 1 0 0 2 2 2 1 0 22 0 2 1 0 0 1 0 2 1 1 2 2 2 2 1 1 0 0 1 1 1 0 0 2 2 2 0 2 1 2 0 1 0 0 0 20 1 1 0 2 1 0 1 0 2 1 2 1 0 2 2 2 0 2 2 0 1 1 1 1 0 2 0 1 1 0 0 2 0 1 1 01 1 1 2 2 2 2 1 1 2 0 2 1 2 0 1 2 1 1 2 1 2 1 0 2 0 0 2 1 0 2 0 0 1 2 2 01 0 1 2 0 1 1 0 1 2 2 1 2 1 1 2 2 0 2 2 1 0 1 0 0 2 0 2 2 0 0 1 0 0 0 1 22 0 1 0 1 1 2 2 2 0 2 2 2 1 1 0 2 0 0 0 1 2 2 2 2 2 2 1 1 2 1 1 1 1 2 1 12 2 0 1 0 0 1 0 1 0 1 2 2 1 2 2 2 1 0 0 1 2 2 1 2 1 1 2 1 1 0 1 0 0 0 2 11 1 0 2 0 1 0 1 1 2 0 0 0 1 2 2 2 0 2 1 1 2 0 0 1 0 0 1 0 2 0 1 1 1 1 2 11 2 2 0]

Exercise

Inspect your clustering

Let’s now inspect the clustering you performed in the previous exercise!

A solution to the previous exercise has already run, so new_points is an array of points and labels is the array of their cluster labels.

Instruction

  • Import matplotlib.pyplot as plt.
  • Assign column 0 of new_points to xs, and column 1 of new_points to ys.
  • Make a scatter plot of xs and ys, specifying the c=labels keyword arguments to color the points by their cluster label. Also specify alpha=0.5.
  • Compute the coordinates of the centroids using the .cluster_centers_ attribute of model.
  • Assign column 0 of centroids to centroids_x, and column 1 of centroids to centroids_y.
  • Make a scatter plot of centroids_x and centroids_y, using 'D' (a diamond) as a marker by specifying the marker parameter. Set the size of the markers to be 50using s=50.
# Import pyplot
import matplotlib.pyplot as plt# Assign the columns of new_points: xs and ys
xs = new_points[:,0]
ys = new_points[:,1]# Make a scatter plot of xs and ys, using labels to define the colors
plt.scatter(xs, ys, c=labels, alpha=0.5)# Assign the cluster centers: centroids
centroids = model.cluster_centers_# Assign the columns of centroids: centroids_x, centroids_y
centroids_x = centroids[:,0]
centroids_y = centroids

这篇关于Datacamp 笔记代码 Unsupervised Learning in Python 第一章 Clustering for dataset exploration的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028851

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优