基于FPGA的SystemVerilog练习

2024-06-04 01:28
文章标签 练习 fpga systemverilog

本文主要是介绍基于FPGA的SystemVerilog练习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、认识SystemVerilog
    • SystemVerilog的语言特性
    • SystemVerilog的应用领域
    • SystemVerilog的优势
    • SystemVerilog的未来发展方向
  • 二、流水灯代码
    • 流水灯部分
    • testbench仿真文件
  • 三、用systemVerilog实现超声波测距
    • 计时器
    • 测距部分
    • led部分
    • 数码管部分
    • 采样部分
    • 顶层文件
    • 引脚绑定
    • 效果
  • 四、SysTemVerilog与verilog的区别
    • 1.语言功能的增强
    • 2.设计流程的优化
    • 3.工具社区的支持

一、认识SystemVerilog

​ SystemVerilog是一种功能强大的硬件描述语言和验证语言。随着电子设计自动化(EDA)技术的不断进步,以及对数字系统设计和验证要求的提高,SystemVerilog应运而生.

SystemVerilog的语言特性

  • 数据类型与建模能力:SystemVerilog提供了丰富的数据类型和强大的建模能力,这使得设计者能够精确地描述硬件的行为和结构。这种高级的数据类型支持,让设计更加灵活且易于理解和维护。
  • 面向对象的特性:与传统的Verilog相比,SystemVerilog增加了面向对象编程的概念,如类、继承和多态等。这使得代码模块性更强,更易于管理和复用,大大提高了开发效率和可维护性。
  • 并发处理的支持:SystemVerilog支持并发处理,允许设计者模拟真实的硬件并行操作环境,这对于描述复杂的硬件系统至关重要。
  • 接口和连接:通过引入接口这一概念,SystemVerilog简化了模块间的通信方式,提高了设计的清晰度和模块间的互操作性。

SystemVerilog的应用领域

  • ASIC与FPGA设计:SystemVerilog被广泛应用于ASIC和FPGA的设计流程中,支持从逻辑综合到验证的各个阶段,能够满足不同规模和复杂度的设计需求。
  • 验证环境构建:SystemVerilog的验证功能特别强大,它为验证工程师提供了构建全面测试套件和验证环境的能力,特别是在复杂的系统级验证中表现出色。
  • 新兴领域的应用:随着技术的发展,SystemVerilog开始在自动驾驶、人工智能、云计算等新兴领域中得到应用,用于构建和验证复杂的系统模型。

SystemVerilog的优势

  • 模块化和可重用性:面向对象的特性使得SystemVerilog的设计更加模块化,易于维护和重用,这有助于缩短产品开发周期并降低成本。
  • 集成的验证功能:SystemVerilog不仅是一个设计语言,它还集成了丰富的验证功能,如约束随机生成、功能覆盖率分析等,这些都是提高验证效率和质量的关键工具。
  • 丰富的生态系统:众多EDA厂商和开源社区的支持,为SystemVerilog提供了强大的工具链和生态系统,从而使得开发者能够更加便捷地进行设计和验证工作。

SystemVerilog的未来发展方向

  • 应用领域的拓展:随着技术的进步和市场需求的变化,SystemVerilog预计将进一步拓展其在多个新兴领域的应用,如物联网、5G通信等。

  • 语言特性的增强:为了跟上技术发展的步伐,SystemVerilog将持续更新其语言特性,包括增强建模能力、扩展验证功能等,以适应更加复杂的设计需求。

  • 工具链的优化与集成:EDA厂商将继续优化SystemVerilog相关工具的性能,提供更加集成化的解决方案,以便为用户提供更加高效和便捷的开发体验。

    ​ 总之,SystemVerilog作为一种先进的硬件描述和验证语言,它的出现极大地推动了数字系统设计和验证领域的发展。通过提供模块化、面向对象的特性,以及集成的验证功能,SystemVerilog不仅提高了设计的质量和效率,还为应对日益增长的设计复杂性提供了强有力的工具。

二、流水灯代码

流水灯部分

module led_water_light(input wire clk,        // 时钟信号input wire rst_n,      // 复位信号,低电平有效output reg [7:0] led   // 8个LED灯
);// 内部逻辑
always @(posedge clk or negedge rst_n) beginif (!rst_n) beginled <= 8'b00000000; // 复位时所有LED熄灭end else begininteger i; // 声明整数变量for (i = 0; i < 8; i++) beginled <= (8'b00000001 << i); // 点亮第i位LED#125; // 等待一个时钟周期,假设为20ns,则0.5s需要250个周期endend
endendmodule

testbench仿真文件

// tb_led_water_light.sv
module tb_led_water_light();// Parameters
parameter CLK_PERIOD = 20;  // 定义时钟周期参数// Inputs
logic clk;
logic rst_n;// Outputs
wire [7:0] led;// 实例化被测试模块
led_water_light uut (.clk(clk),.rst_n(rst_n),.led(led)
);// 时钟信号生成
always #(CLK_PERIOD / 2) clk = ~clk;// 测试序列
initial begin// 初始化信号clk = 0;rst_n = 0;// 等待一个时钟周期#(CLK_PERIOD * 10);// 释放复位信号rst_n = 1;// 等待足够的时间来观察LED的变化#(CLK_PERIOD * 1000); // 等待50个时钟周期,即2ms// 再次触发复位rst_n = 0;#(CLK_PERIOD * 10);rst_n = 1;// 继续观察LED变化#(CLK_PERIOD * 1000); // 再次等待50个时钟周期,即2ms// 结束仿真$finish;
end// 监控输出变化
initial begin$monitor("Time = %t, rst_n = %b, led = %b", $time, rst_n, led);
endendmodule

在这里插入图片描述
在这里插入图片描述

这里加速了一下,实际每个灯亮0.5秒


三、用systemVerilog实现超声波测距

关于HC-SR04模块可以参考我之前stm32的博客https://blog.csdn.net/cbm2001/article/details/139374257?spm=1001.2014.3001.5501

下面是代码:

计时器

module 	clk_us(input  logic		clk	, //system clock 50MHzinput  logic		rst_n	, //reset ,low valid	   output logic 		clk_us 	  //
);
//Parameter Declarationsparameter CNT_MAX = 19'd50;//1us的计数值为 50 * Tclk(20ns)//Interrnal wire/reg declarationslogic	[5:00]	cnt		; //Counter logic			add_cnt ; //Counter Enablelogic			end_cnt ; //Counter Reset //Logic Descriptionalways @(posedge clk or negedge rst_n)begin  if(!rst_n)begin  cnt <= 'd0; end  else if(add_cnt)begin  if(end_cnt)begin  cnt <= 'd0; end  else begin  cnt <= cnt + 1'b1; end  end  else begin  cnt <= cnt;  end  end assign add_cnt = 1'b1; assign end_cnt = add_cnt && cnt >= CNT_MAX - 19'd1;assign clk_us = end_cnt;endmodule 

测距部分

module 	Echo(input logic 		clk		, //clock 50MHzinput logic			clk_us	, //system clock 1MHzinput logic 		rst_n	, //reset ,low valid  input logic 		echo	, //output logic [18:00]	data_o	  //检测距离,保留3位小数,*1000实现
);
/* 		S(um) = 17 * t 		-->  x.abc cm	*/
//Parameter Declarationsparameter T_MAX = 16'd60_000;//510cm 对应计数值//Interrnal wire/reg declarationslogic			r1_echo,r2_echo; //边沿检测	logic			echo_pos,echo_neg; //logic	[15:00]	cnt		; //Counter logic			add_cnt ; //Counter Enablelogic			end_cnt ; //Counter Reset logic	[18:00]	data_r	;
//Logic Description//如果使用clk_us 检测边沿,延时2us,差值过大always @(posedge clk or negedge rst_n)begin  if(!rst_n)begin  r1_echo <= 1'b0;r2_echo <= 1'b0;end  else begin  r1_echo <= echo;r2_echo <= r1_echo;end  endassign echo_pos = r1_echo & ~r2_echo;assign echo_neg = ~r1_echo & r2_echo;always @(posedge clk_us or negedge rst_n)begin  if(!rst_n)begin  cnt <= 'd0; end else if(add_cnt)begin  if(end_cnt)begin  cnt <= cnt; end  else begin  cnt <= cnt + 1'b1; end  end  else begin  //echo 低电平 归零cnt <= 'd0;  end  end assign add_cnt = echo; assign end_cnt = add_cnt && cnt >= T_MAX - 1; //超出最大测量范围则保持不变,极限always @(posedge clk or negedge rst_n)begin  if(!rst_n)begin  data_r <= 'd2;end  else if(echo_neg)begin  data_r <= (cnt << 4) + cnt;end  else begin  data_r <= data_r;end  end //always endassign data_o = data_r >> 1;endmodule 

led部分

module Trig(input  logic		clk_us	, //system clock 1MHzinput  logic		rst_n	, //reset ,low valid	   output logic 		trig	  //触发测距信号
);
//Parameter Declarationsparameter CYCLE_MAX = 19'd300_000;//Interrnal wire/reg declarationslogic	[18:00]	cnt		; //Counter logic			add_cnt ; //Counter Enablelogic			end_cnt ; //Counter Reset //Logic Description	always @(posedge clk_us or negedge rst_n)begin  if(!rst_n)begin  cnt <= 'd0; end  else if(add_cnt)begin  if(end_cnt)begin  cnt <= 'd0; end  else begin  cnt <= cnt + 1'b1; end  end  else begin  cnt <= cnt;  end  end assign add_cnt = 1'b1; assign end_cnt = add_cnt && cnt >= CYCLE_MAX - 9'd1; assign trig = cnt < 15 ? 1'b1 : 1'b0;endmodule 

数码管部分

module seg(input   logic        clk     ,input   logic        rst_n   ,input   logic [18:0] data_o  ,output  logic [6:0]  hex1    ,output  logic [6:0]  hex2    ,output  logic [6:0]  hex3    ,output  logic [6:0]  hex4    ,output  logic [6:0]  hex5    ,output  logic [6:0]  hex6    ,output  logic [6:0]  hex7    ,output  logic [6:0]  hex8     
);parameter   NOTION  = 4'd10,FUSHU   = 4'd11;
parameter   MAX20us = 10'd1000;
logic [9:0]   cnt_20us;
logic [7:0]   sel_r;
logic [3:0]   number;
logic [6:0]   seg_r;
logic [6:0]   hex1_r;
logic [6:0]   hex2_r;
logic [6:0]   hex3_r;
logic [6:0]   hex4_r;
logic [6:0]   hex5_r;
logic [6:0]   hex6_r;
logic [6:0]   hex7_r;
logic [6:0]   hex8_r;//20微妙计数器
always @(posedge clk or negedge rst_n) beginif (!rst_n) begincnt_20us <= 10'd0;endelse if (cnt_20us == MAX20us - 1'd1) begincnt_20us <= 10'd0;endelse begincnt_20us <= cnt_20us + 1'd1;end
end//单个信号sel_r位拼接约束
always @(posedge clk or negedge rst_n) beginif (!rst_n) beginsel_r <= 8'b11_11_11_10;endelse if (cnt_20us == MAX20us - 1'd1) beginsel_r <= {sel_r[6:0],sel_r[7]};endelse beginsel_r <= sel_r;end
end/*拿到数字*/
always @(*) begincase (sel_r)8'b11_11_11_10:     number  = NOTION                                        ;8'b11_11_11_01:     number  = data_o/10_0000                                ;8'b11_11_10_11:     number  = (data_o%10_0000)/1_0000                       ;8'b11_11_01_11:     number  = ((data_o%10_0000)%1_0000)/1000                ;8'b11_10_11_11:     number  = FUSHU                                         ;8'b11_01_11_11:     number  = (((data_o%10_0000)%1_0000)%1000)/100          ;8'b10_11_11_11:     number  = ((((data_o%10_0000)%1_0000)%1000)%100)/10     ;8'b01_11_11_11:     number  = ((((data_o%10_0000)%1_0000)%1000)%100)%10     ;default:            number  = 4'd0                                          ;endcase
end/*通过数字解析出seg值*/
always @(*) begincase (number)4'd0    :       seg_r   =  7'b100_0000;4'd1    :       seg_r   =  7'b111_1001;4'd2    :       seg_r   =  7'b010_0100;4'd3    :       seg_r   =  7'b011_0000;4'd4    :       seg_r   =  7'b001_1001;4'd5    :       seg_r   =  7'b001_0010;4'd6    :       seg_r   =  7'b000_0010;4'd7    :       seg_r   =  7'b111_1000;4'd8    :       seg_r   =  7'b000_0000;4'd9    :       seg_r   =  7'b001_0000;NOTION  :       seg_r   =  7'b111_1111;FUSHU   :       seg_r   =  7'b011_1111;default :       seg_r   =  7'b111_1111;endcase
endalways @(*) begincase (sel_r)8'b11_11_11_10:     hex1_r = seg_r;8'b11_11_11_01:     hex2_r = seg_r;8'b11_11_10_11:     hex3_r = seg_r;8'b11_11_01_11:     hex4_r = seg_r;8'b11_10_11_11:     hex5_r = seg_r;8'b11_01_11_11:     hex6_r = seg_r;8'b10_11_11_11:     hex7_r = seg_r;8'b01_11_11_11:     hex8_r = seg_r;default:            seg_r  = seg_r;endcase
endassign  hex1 = hex1_r;
assign  hex2 = hex2_r;
assign  hex3 = hex3_r;
assign  hex4 = hex4_r;
assign  hex5 = hex5_r;
assign  hex6 = hex6_r;
assign  hex7 = hex7_r;
assign  hex8 = hex8_r;endmodule

采样部分

module Trig(input  logic		clk_us	, //system clock 1MHzinput  logic		rst_n	, //reset ,low valid	   output logic 		trig	  //触发测距信号
);
//Parameter Declarationsparameter CYCLE_MAX = 19'd300_000;//Interrnal wire/reg declarationslogic	[18:00]	cnt		; //Counter logic			add_cnt ; //Counter Enablelogic			end_cnt ; //Counter Reset //Logic Description	always @(posedge clk_us or negedge rst_n)begin  if(!rst_n)begin  cnt <= 'd0; end  else if(add_cnt)begin  if(end_cnt)begin  cnt <= 'd0; end  else begin  cnt <= cnt + 1'b1; end  end  else begin  cnt <= cnt;  end  end assign add_cnt = 1'b1; assign end_cnt = add_cnt && cnt >= CYCLE_MAX - 9'd1; assign trig = cnt < 15 ? 1'b1 : 1'b0;endmodule 

顶层文件

module top (input   logic       clk    ,input   logic       rst_n  ,input   logic       echo    ,output  logic       [3:0]led,output  logic       trig    , output  logic [6:0]  hex1    ,output  logic [6:0]  hex2    ,output  logic [6:0]  hex3    ,output  logic [6:0]  hex4    ,output  logic [6:0]  hex5    ,output  logic [6:0]  hex6    ,output  logic [6:0]  hex7    ,output  logic [6:0]  hex8   
);wire    [18:0]  data_o;Trig inster_Trig(
.clk_us	   (clk_us	), //system clock 1MHz
.rst_n	   (rst_n	), //reset ,low valid
.trig	   (trig	)  //触发测距信号
);clk_us  insert_clk_us(
.clk	    (clk	),
.rst_n	    (rst_n),
.clk_us     (clk_us)	 
);Echo 	inster_Echo(
.clk	     (clk    	),
.clk_us	     (clk_us	),
.rst_n	     (rst_n  	),  
.echo	     (echo	    ), 
.data_o	     (data_o	) 
);LED inster_LED(
.clk       (clk  ) ,
.rst_n     (rst_n) ,
.dis       (data_o ) ,
.led       (led  ) 
);seg inster_seg(.clk    (clk   ) ,.rst_n  (rst_n ) ,.data_o (data_o) ,.hex1   (hex1)   ,.hex2   (hex2)   ,.hex3   (hex3)   ,.hex4   (hex4)   ,.hex5   (hex5 )  ,.hex6   (hex6 )  ,.hex7   (hex7 )  ,.hex8   (hex8 )  
);
endmodule

引脚绑定

在这里插入图片描述
在这里插入图片描述

注意HC-SR04模块的连线以自己接线为准

效果

距离<10cm,亮两个灯,那个减号是小数点

在这里插入图片描述

距离在10~20cm亮一个灯
在这里插入图片描述

距离>20cm,亮三个灯

在这里插入图片描述

四、SysTemVerilog与verilog的区别

​ SystemVerilog并不是与Verilog完全相同,而是Verilog的扩展和超集。虽然SystemVerilog继承了Verilog的基本结构和语法,但是它通过引入面向对象编程、动态线程控制、高层抽象数据类型等先进特性,极大地扩展了Verilog的功能。下面是SystemVerilog相对于Verilog的几个主要差异:

1.语言功能的增强

  • 面向对象的特性:SystemVerilog引入了类、继承、多态等面向对象的概念,这不仅提高了代码的重用性和模块化,还使得测试平台的构建更为灵活和强大。
  • 并发模型的改进:SystemVerilog提供了fork-join语法,支持更加精细的并发控制,这对于复杂的验证环境尤其重要。
  • 数据类型的丰富:除了基本的wire和reg类型,SystemVerilog还新增了如logic、enum、struct等多种数据类型,支持更广泛的设计需求。
  • 验证能力的提升
    约束随机生成:SystemVerilog支持带约束的随机生成技术,这可以自动产生更多样化的测试场景,极大地提高验证的覆盖率和效率。
  • 功能覆盖率分析:内置的功能覆盖率分析工具帮助验证工程师精确地量化验证进度,确保设计满足所有功能要求。
  • 断言的支持:通过SVA(SystemVerilog Assertions),SystemVerilog允许设计者在代码中直接嵌入断言,以监测设计行为的特定属性,这对排查问题和确保设计的正确性至关重要。

2.设计流程的优化

  • 接口的概念:SystemVerilog中的接口是一种强大的结构,它允许设计者将相关的信号组合在一起,简化模块间的连接,提高设计的清晰度和可维护性。
  • 时间精度的控制:SystemVerilog提供了更为精确的时间控制机制,支持从秒到飞秒的多种时间单位,这有助于处理高速设计中的时间精度问题。

3.工具社区的支持

  • 更多的工具支持:由于其强大的功能和广泛的应用,多数现代EDA工具都原生支持SystemVerilog,为用户提供了丰富的设计和验证工具链。
  • 活跃的开发社区:围绕SystemVerilog形成了一个活跃的开发社区,许多开源项目和论坛都在不断促进这一语言的发展和完善。

,支持更广泛的设计需求。

  • 验证能力的提升
    约束随机生成:SystemVerilog支持带约束的随机生成技术,这可以自动产生更多样化的测试场景,极大地提高验证的覆盖率和效率。
  • 功能覆盖率分析:内置的功能覆盖率分析工具帮助验证工程师精确地量化验证进度,确保设计满足所有功能要求。
  • 断言的支持:通过SVA(SystemVerilog Assertions),SystemVerilog允许设计者在代码中直接嵌入断言,以监测设计行为的特定属性,这对排查问题和确保设计的正确性至关重要。

这篇关于基于FPGA的SystemVerilog练习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028669

相关文章

RabbitMQ练习(AMQP 0-9-1 Overview)

1、What is AMQP 0-9-1 AMQP 0-9-1(高级消息队列协议)是一种网络协议,它允许遵从该协议的客户端(Publisher或者Consumer)应用程序与遵从该协议的消息中间件代理(Broker,如RabbitMQ)进行通信。 AMQP 0-9-1模型的核心概念包括消息发布者(producers/publisher)、消息(messages)、交换机(exchanges)、

【Rust练习】12.枚举

练习题来自:https://practice-zh.course.rs/compound-types/enum.html 1 // 修复错误enum Number {Zero,One,Two,}enum Number1 {Zero = 0,One,Two,}// C语言风格的枚举定义enum Number2 {Zero = 0.0,One = 1.0,Two = 2.0,}fn m

MySql 事务练习

事务(transaction) -- 事务 transaction-- 事务是一组操作的集合,是一个不可分割的工作单位,事务会将所有的操作作为一个整体一起向系统提交或撤销请求-- 事务的操作要么同时成功,要么同时失败-- MySql的事务默认是自动提交的,当执行一个DML语句,MySql会立即自动隐式提交事务-- 常见案例:银行转账-- 逻辑:A给B转账1000:1.查询

html css jquery选项卡 代码练习小项目

在学习 html 和 css jquery 结合使用的时候 做好是能尝试做一些简单的小功能,来提高自己的 逻辑能力,熟悉代码的编写语法 下面分享一段代码 使用html css jquery选项卡 代码练习 <div class="box"><dl class="tab"><dd class="active">手机</dd><dd>家电</dd><dd>服装</dd><dd>数码</dd><dd

014.Python爬虫系列_解析练习

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈 PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)文章合集 👈👈 Oracle数据库教程:👉👉 Oracle数据库文章合集 👈👈 优

如何快速练习键盘盲打

盲打是指在不看键盘的情况下进行打字,这样可以显著提高打字速度和效率。以下是一些练习盲打的方法: 熟悉键盘布局:首先,你需要熟悉键盘上的字母和符号的位置。可以通过键盘图或者键盘贴纸来帮助记忆。 使用在线打字练习工具:有许多在线的打字练习网站,如Typing.com、10FastFingers等,它们提供了不同难度的练习和测试。 练习基本键位:先从学习手指放在键盘上的“家位”开始,通常是左手的

anaconda3下的python编程练习-csv翻译器

相关理解和命令 一、环境配置1、conda命令2、pip命令3、python命令 二、开发思路三、开发步骤 一、环境配置 1、conda命令 镜像源配置 conda config --show channels //查看镜像源conda config --remove-key channels //删除添加源,恢复默认源#添加镜像源conda config --ad

推荐练习键盘盲打的网站

对于初学者来说,以下是一些推荐的在线打字练习网站: 打字侠:这是一个专业的在线打字练习平台,提供科学合理的课程设置和个性化学习计划,适合各个水平的用户。它还提供实时反馈和数据分析,帮助你提升打字速度和准确度。 dazidazi.com:这个网站提供了基础的打字练习,适合初学者从零开始学习打字。 Type.fun打字星球:提供了丰富的盲打课程和科学的打字课程设计,还有诗词歌赋、经典名著等多样

综合DHCP、ACL、NAT、Telnet和PPPoE进行网络设计练习

描述:企业内网和运营商网络如上图所示。 公网IP段:12.1.1.0/24。 内网IP段:192.168.1.0/24。 公网口PPPOE 拨号采用CHAP认证,用户名:admin 密码:Admin@123 财务PC 配置静态IP:192.168.1.8 R1使用模拟器中的AR201型号,作为交换路由一体机,下图的WAN口为E0/0/8口,可以在该接口下配置IP地址。 可以通过

FPGA编译与部署方法全方位介绍

FPGA编译与部署是FPGA开发中的核心环节,涉及从代码编写、调试到将设计部署到FPGA硬件的全过程。这个流程需要经过创建项目、编写FPGA VI、模拟调试、编译生成比特流文件,最后将设计部署到硬件上运行。编译的特点在于并行执行能力、定制化硬件实现以及复杂的时钟管理。通过LabVIEW的FPGA模块和NI硬件,可以快速完成开发和部署,尤其适用于复杂控制与高性能数据处理系统。 1. FPG