昆仑万维官宣开源2000亿稀疏大模型Skywork-MoE

2024-06-03 22:28

本文主要是介绍昆仑万维官宣开源2000亿稀疏大模型Skywork-MoE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

6月3日,昆仑万维宣布开源2千亿稀疏大模型Skywork-MoE,性能强劲,同时推理成本更低。

据「TMT星球」了解,Skywork-MoE基于之前昆仑万维开源的Skywork-13B模型中间checkpoint扩展而来,是首个完整将MoE Upcycling技术应用并落地的开源千亿MoE大模型,也是首个支持用单台4090服务器推理的开源千亿MoE大模型。

开源地址:

Skywork-MoE 的模型权重、技术报告完全开源,免费商用,无需申请:

• 模型权重下载:

○ https://huggingface.co/Skywork/Skywork-MoE-base

○ https://huggingface.co/Skywork/Skywork-MoE-Base-FP8

• 模型开源仓库:https://github.com/SkyworkAI/Skywork-MoE

• 模型技术报告:https://github.com/SkyworkAI/Skywork-MoE/blob/main/skywork-moe-tech-report.pdf

• 模型推理代码:(支持 8x4090 服务器上 8 bit 量化加载推理) https://github.com/SkyworkAI/vllm

模型架构:

本次开源的 Skywork-MoE 模型隶属于天工 3.0 的研发模型系列,是其中的中档大小模型(Skywork-MoE-Medium),模型的总参数量为 146B,激活参数量 22B,共有 16 个 Expert,每个 Expert 大小为 13B,每次激活其中的 2 个 Expert。

天工 3.0 还训练了 75B (Skywork-MoE-Small) 和 400B (Skywork-MoE-Large)两档 MoE 模型,并不在此次开源之列。

模型能力:

我们基于目前各大主流模型评测榜单评测了 Skywork-MoE,在相同的激活参数量 20B(推理计算量)下,Skywork-MoE 能力在行业前列,接近 70B 的 Dense 模型。使得模型的推理成本有近 3 倍的下降。同时 Skywork-MoE 的总参数大小比 DeepSeekV2 的总参数大小要小 1/3,用更小的参数规模做到了相近的能力。

技术创新:

为了解决 MoE 模型训练困难,泛化性能差的问题,相较于 Mixtral-MoE, Skywork-MoE 设计了两种训练优化算法:

1. Gating Logits 归一化操作

我们在 Gating Layer 的 token 分发逻辑处新增了一个 normalization 操作,使得 Gating Layer 的参数学习更加趋向于被选中的 top-2 experts,增加 MoE 模型对于 top-2 的置信度:

2. 自适应的 Aux Loss

有别于传统的固定系数(固定超参)的 aux loss, 我们在 MoE 训练的不同阶段让模型自适应的选择合适的 aux loss 超参系数,从而让 Drop Token Rate 保持在合适的区间内,既能做到 expert 分发的平衡,又能让 expert 学习具备差异化,从而提升模型整体的性能和泛化水平。在 MoE 训练的前期,由于参数学习不到位,导致 Drop Token Rate 太高(token 分布差异太大),此时需要较大的 aux loss 帮助 token load balance;在 MoE 训练的后期,我们希望 Expert 之间仍保证一定的区分度,避免 Gating 倾向为随机分发 Token,因此需要较低的 aux loss 降低纠偏。

训练 Infra

如何对 MoE 模型高效的进行大规模分布式训练是一个有难度的挑战,目前社区还没有一个最佳实践。Skywork-MoE 提出了两个重要的并行优化设计,从而在千卡集群上实现了 MFU 38% 的训练吞吐,其中 MFU 以 22B 的激活参数计算理论计算量。

1. Expert Data Parallel

区别于 Megatron-LM 社区已有的 EP(Expert Parallel)和 ETP(Expert Tensor Parallel)设计,我们提出了一种称之为 Expert Data Parallel 的并行设计方案,这种并行方案可以在 Expert 数量较小时仍能高效的切分模型,对 Expert 引入的 all2all 通信也可以最大程度的优化和掩盖。

相较于 EP 对 GPU 数量的限制和 ETP 在千卡集群上的低效, EDP 可以较好的解决大规模分布式训练 MoE 的并行痛点,同时 EDP 的设计简单、鲁棒、易扩展,可以较快的实现和验证。

2. 非均匀切分流水并行

由于 first stage 的 Embedding 计算和 last stage 的 Loss 计算,以及 Pipeline Buffer 的存在, 流水并行下均匀切分 Layer 时的各 stage 计算负载和显存负载均有较明显的不均衡情况。我们提出了非均匀的流水并行切分和重计算 Layer 分配方式,使得总体的计算/显存负载更均衡,约有 10% 左右的端到端训练吞吐提升。

比较均匀切分和非均匀切分下的流水并行气泡:对于一个 24 层 Layer 的 LLM, (a) 是均匀切分成 4 个 stage,每个 stage 的 layer 数量是:[6, 6, 6, 6].(b) 是经过优化后的非均匀切分方式,切成 5 个 stage, 每个 stage 的 layer 数量是:[5, 5, 5, 5, 4] , 在中间流水打满的阶段,非均匀切分的气泡更低。

MoE Know-how

此外,Skywork-MoE 还通过一系列基于 Scaling Laws 的实验,探究哪些约束会影响 Upcycling 和 From Scratch 训练 MoE 模型的好坏。

一个可以遵循的经验规则是:如果训练 MoE 模型的 FLOPs 是训练 Dense 模型的 2 倍以上,那么选择 from Scratch 训练 MoE 会更好,否则的话,选择 Upcycling 训练 MoE 可以明显减少训练成本。

4090 推理

Skywork-MoE 是目前能在 8x4090 服务器上推理的最大的开源 MoE 模型。8x4090 服务器一共有 192GB 的 GPU 显存,在 FP8 量化下(weight 占用 146GB),使用我们首创的非均匀 Tensor Parallel 并行推理方式,Skywork-MoE 可以在合适的 batch size 内达到 2200 tokens/s 的吞吐。天工团队完整开源了相关的推理框架代码和安装环境,详情参见:https://github.com/SkyworkAI/Skywork-MoE

结语

我们希望本次开源的 Skywork-MoE 模型、技术报告和相关的实验结果可以给开源社区贡献更多的 MoE 训练经验和 Know-how,包括模型结构、超参选择、训练技巧、训练推理加速等各方面,探索用更低的训练推理成本训更大更强的模型,在通往 AGI 的道路上贡献一点力量。

这篇关于昆仑万维官宣开源2000亿稀疏大模型Skywork-MoE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028288

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言