开源模型应用落地-语音转文本-openai-STT服务-AIGC应用探索(四)

2024-06-03 20:04

本文主要是介绍开源模型应用落地-语音转文本-openai-STT服务-AIGC应用探索(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

    语音转文本技术具有重要价值。它能提高信息记录和处理的效率,使人们可以快速将语音内容转换为可编辑、可存储的文本形式,方便后续查阅和分析。在教育领域,可帮助学生更好地记录课堂重点;在办公场景中,能简化会议记录工作。同时,该技术也为残障人士提供了便利,让他们能更方便地与外界交流。此外,对于媒体行业、客服行业等都有着广泛的应用,极大地提升了工作流程和服务质量。 

    本文将介绍OpenAI付费的语音识别服务。这个服务可以帮助用户将语音转换成文本,为用户提供方便实用的语音转文本服务。


二、术语介绍

2.1. 语音转文本

    也称为语音识别或自动语音识别 (ASR)是一种将语音音频转换为文字的技术。它利用计算机程序和算法来监听语音输入,并将其转换为可读的文字输出。

2.2. Whisper(付费版本)

    Whisper是一个通用语音识别模型。它是在大型多样化音频数据集上训练的,也是一个多任务模型,可以执行多语言语音识别、语音翻译和语言鉴别。

    目前,开源版本的Whisper和通过Openai API提供的版本没有区别。但是,通过Openai API,提供了优化的推理过程,这使得通过API运行Whisper的速度要快于其他方式。

    具体参见:  https://platform.openai.com/docs/models/whisper


三、构建环境

3.1.基础环境

  1.  操作系统:centos7
  2.  Tesla V100-SXM2-32GB  CUDA Version: 12.2

3.2.安装虚拟环境

conda create -n whisper  python=3.10
conda activate whisper
pip install openai

四、技术实现

4.1. 准备测试音频文件

先搞个测试音频:英语诗歌朗诵:Freedom 珍惜自由_Mp3免费下载-在线听力 - 听力课堂

4.2. Openai调用方式

4.2.1.Transcriptions

# -*- coding: utf-8 -*-
import os
from openai import OpenAIos.environ["OPENAI_API_KEY"] = 'sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'    #你的Open AI Keyif __name__ == '__main__':input_path = "C:\\Downloads\\freedom.mp3"client = OpenAI()audio_file = open(input_path, "rb")transcription = client.audio.transcriptions.create(model="whisper-1",file=audio_file)print(transcription.text)

调用结果:

结论:

Openai生成的文本和官方提供的文本有一些差异(我也没有听过测试音频,不敢保证官方提供的文本是否百分百正确,或者模型生成的才是正解,你们来动手实践一下,看看谁更准确呢?),对比如下:

注意:

文件上传目前限制为25 MB,支持以下输入文件类型:mp3、mp4、mpeg、mpga、m4a、wav和webm。

4.2.2.Translations

# -*- coding: utf-8 -*-
import os
from openai import OpenAIos.environ["OPENAI_API_KEY"] = 'sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'    #你的Open AI Keyif __name__ == '__main__':input_path = "C:\\Downloads\\freedom.mp3"client = OpenAI()audio_file = open(input_path, "rb")translation = client.audio.translations.create(model="whisper-1",file=audio_file)print(translation.text)

调用结果:

执行结果与实现方式一一致

4.3. 传统调用方式

# -*- coding: utf-8 -*-
import requestsurl = "https://api.openai.com/v1/audio/transcriptions"
OPENAI_API_KEY = 'sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'    #你的Open AI Keyif __name__ == '__main__':input_path = "C:\\Downloads\\freedom.mp3"headers = {"Authorization": f"Bearer {OPENAI_API_KEY}"}files = {'file': ('freedom.mp3', open(input_path, 'rb'), 'application/octet-stream')}params = {'model': 'whisper-1'}with open(input_path, 'rb') as file:response = requests.post(url, files={'file': file}, data=params, headers=headers)if response.status_code == 200:print("Audio transcription successful!")print(response.json())else:print("Audio transcription failed.")print(response.text)

调用结果:

执行结果与实现方式一一致

PS:

1. 实现方式三不需要安装openai库,更轻便,通用性更好

2. 切换url(https://api.openai.com/v1/audio/transcriptions)可以实现音频翻译的功能

4.4. CURL调用方式

Transcriptions

curl --request POST \--url https://api.openai.com/v1/audio/transcriptions \--header "Authorization: Bearer $OPENAI_API_KEY" \--header 'Content-Type: multipart/form-data' \--form file=@/path/to/file/audio.mp3 \--form model=whisper-1

Translations

curl --request POST \--url https://api.openai.com/v1/audio/translations \--header "Authorization: Bearer $OPENAI_API_KEY" \--header 'Content-Type: multipart/form-data' \--form file=@/path/to/file/german.mp3 \--form model=whisper-1

五、附带说明

5.1. 方式一的​Transcriptions​和方式二的Translations的区别

  • Transcriptions:将音频转录为音频所使用的任何语言。
  • Translations:将音频翻译并转录成英文。与Transcriptions差异是Translations的输出不是原始输入语言,而是翻译成英文文本。

5.2. 方式三出现“Could not parse multipart form”问题

解决方法:把请求头的"Content-Type": "multipart/form-data" 声明去掉

这篇关于开源模型应用落地-语音转文本-openai-STT服务-AIGC应用探索(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027970

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

TP-Link PDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务

《TP-LinkPDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务》近期,路由器制造巨头普联(TP-Link)在用户群体中引发了一系列重要变动,上个月,公司发出了一则通知,明确要求所... 路由器厂商普联(TP-Link)上个月发布公告要求所有用户必须完成实名认证后才能继续使用普联提供的 D

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构