一些我推荐的和想上的网络课程(Coursera, edX, Udacity)

2024-06-03 16:58

本文主要是介绍一些我推荐的和想上的网络课程(Coursera, edX, Udacity),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从面向找工作的角度出发,我觉得以下课程有很大帮助:

首推Robert Sedgewick,也是我觉得对我帮助最大的老师,讲课特点是能把复杂的算法讲解清楚(典型例子:红黑树,KMP算法)

他在Coursera有四门课,循序渐进,也越来越理论,尤其是前三门,非常值得一上。个人认为上完前两门,你的理论基础(当然还要结合刷题的实践)已经可以虐普遍的小公司和大部分的大公司了。上完第三门可以虐一流公司如Google,Facebook,Linkedin等。第四门还没开,不过看过课程介绍,觉得上完可以去当大公司的算法工程师了。

下面列出这四门课:

Algorithms, Part I  内容:Union-Find,Analysis of Algorithms,Stacks and Queues,Elementary Sorts,Mergesort,Quicksort,Priority Queues,Elementary Symbol Tables,Balanced Search Trees,Geometric Applications of BSTs,Hash Tables

Algorithms, Part II  内容:Undirected Graphs,Directed Graphs,Minimum Spanning Trees,Shortest Paths,Maximum Flow,String Sorts,Tries,Substring Search,Regular Expressions,Data Compression,Reductions,Linear Programming,Intractability     唯一的遗憾就是没有讲Dynamic Programming

Analysis of Algorithms  内容:Analysis of Algorithms,Recurrences,Solving recurrences with GFs,Asymptotics,The symbolic method,Trees,Permutations,Strings and Tries,Words and Mappings  也是非常干货的一门课!

Analytic Combinatorics  内容请参考连接,感觉已经非常理论了。


然后我想上的课有:

Stanford的Machine Learning:https://www.coursera.org/course/ml     

Functional Programming Principles in Scala  https://www.coursera.org/course/progfun

Principles of Computing  https://www.coursera.org/course/principlescomputing

Programming Cloud Services for Android Handheld Systems  https://www.coursera.org/course/mobilecloud  云

Algorithmic Thinking  https://www.coursera.org/course/algorithmicthink

機器學習基石 (Machine Learning Foundations)  https://www.coursera.org/course/ntumlone   试试台湾大学的课程

程序设计实习 / Practice on Programming  https://www.coursera.org/course/pkupop    前半部分都是介绍C++比较无趣,后半部分讲算法。另外一个优点就是用POJ平台!

Web Intelligence and Big Data  https://www.coursera.org/course/bigdata   大数据

The Hardware/Software Interface  https://www.coursera.org/course/hwswinterface   其实就是CMU的15213,但据说讲的比CMU还好

Machine Learning   https://www.coursera.org/course/machlearning

Introduction to Data Science  https://www.coursera.org/course/datasci

Introduction to Recommender Systems  https://www.coursera.org/course/recsys   感觉非常有意思的一门课,能做出像Amazon一样的推荐系统~


Web Application https://www.coursera.org/course/webapplications


Software as a Service  https://www.edx.org/course/uc-berkeleyx/uc-berkeleyx-cs169-1x-software-service-1136


HTML5 Game Development   https://www.udacity.com/course/cs255   感觉是个挺有意思的项目

Software Testinghttps://www.udacity.com/course/cs258   了解一些Test是做什么的

Software Debugging   https://www.udacity.com/course/cs259    同上Debug

Programming Languages   https://www.udacity.com/course/cs262

Design of Computer Programs   https://www.udacity.com/course/cs212


Discrete Mathematics in Computer Science  http://www.math.dartmouth.edu/archive/m19w03/public_html/book.html


Stanford系列:

https://practicalunix.org/

http://callbackjs.me/

http://www.stanford.edu/class/cs101/

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms

http://db.class.stanford.edu


MIT系列:

Introduction to Algorithm:

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/


Mathematics for Computer Science

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/video-lectures/


Advanced Data Structures

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/lecture-videos/


Computer System Engineering

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-033-computer-system-engineering-spring-2009/video-lectures/



Multicore Programming Primer

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-multicore-programming-primer-january-iap-2007/lecture-notes-and-video/




组合数学:http://v.ku6.com/playlist/index_2489333.html

图论:    http://v.ku6.com/playlist/index_3735438.html

初等数论:http://v.ku6.com/playlist/index_2489323.html



Distributed System (KTH)

http://www.ict.kth.se/courses/ID2203/readings.html



http://www.semantikoz.com/blog/9-free-online-data-science-courses/



Data Science is a hot topic and there are plenty of courses and resources available for anyone interested. Try out these 9 free resources to get started if you are new to the topic or want to refresh on one of the subjects.

Data Science

Introduction to Data Science

A Coursera course specifically about data science, due to start in April 2013. I am very curious about it since its broad syllabus appears to capture many of the experiences data scientists need. Much of it had to be gathered in the field until now. Having a dedicated course for it is an appealing idea.
Course Syllabus – Specific Topics

  • Data modeling: relations, key-value, trees, graphs, images, text
  • Relational algebra and parallel query processing
  • NoSQL systems, key-value stores
  • Tradeoffs of SQL, NoSQL, and NewSQL systems
  • Algorithm design in Hadoop (and MapReduce in general)
  • Basic statistical analysis at scale: sampling, regression
  • Introduction to data mining: clustering, association rules, decision trees
  • Case studies in analytics: social networking, bioinformatics, text processing

Data Science Academy

The academy is due to start early 2013 with some interesting workshops:

  • Dive into Cloudera Impala
  • NumPy for Data Scientists
  • Couchbase for Data Scientists
  • MapReduce Algorithm Design
  • Integrating SAP HANA with R
  • Scikit-learn: Machine Learning with Python

Blogged Data Science Course

You can read through the blog of Columbia’s fall 2012 data science course if you can not wait for Coursera in April 2013. The blog posts are very detailed and worthwhile reading if you are new to the field or want to get a broad view of it.

Machine Learning

Coursera

Data Science and machine learning are tightly related and should be of interest to any data science enthusiast. The Coursera machine learning course by Stanford Associate Professor Andrew Ng comes highly recommended to anyone interested in a solid introduction into machine learning with a hands-on approach, and great lecture material and videos.

Caltech

The California Institute of Technology ran a free online machine learning course with video lectures earlier in 2012. The lectures are still online for anyone to watch and another course will start in January 2013.

Visualisation

Introduction to Infographics and Data Visualization

An important aspect of data science can be data visualisation. The best analytics and models are not effective if the information and insight gained can not be easily and transparently shared with your client, consumer, or customer. The Knight Center is running their second massive open online course early 2013 about infographics and data visualisation.

Statistics

Statistical Computing

Statistics and data analysis are, of course, the bread and butter of data science. This fall 2012 Carnegie Mellon University course is not as fancy as Coursera one. In fact, it is little more than a page with all the lecture slides, homework, lab sheets and solutions. But it is free and comprehensive so give it a try.

Update

I know I wrote 9 resources but as I come across something good I might just append it here to the end.

Try R

This is a fun way to get started with R. It is a web site that teaches you, interactively, R. Not much more to say than give it a go.

Wiki Books

Head over to Wiki Books to read ‘Data Science: An Introduction‘. There is already some signifcant material. Nevertheless, it is a work in progress and you can contribute.

Nearly complete is ‘Statistics‘ a book, you guessed it, about statistics.



http://bigdatauniversity.com/

http://www.edureka.in/blog/install-apache-hadoop-cluster/








本list将保持不断更新。。。

这篇关于一些我推荐的和想上的网络课程(Coursera, edX, Udacity)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027574

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依