Spark-StructuredStreaming checkpointLocation分析、优化耗时

本文主要是介绍Spark-StructuredStreaming checkpointLocation分析、优化耗时,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1 问题描述
  • 2 分析 checkpointLocation 配置
    • 2.1 checkpointLocation 在源码调用链
    • 2.2 MetadataLog(元数据日志接口)
  • 3 分析 checkpointLocation 目录内容
    • 3.1 offsets 目录
    • 3.2 commitLog 目录
    • 3.3 metadata 目录
    • 3.4 sources 目录
    • 3.5 sinks 目录
  • 4 解决方案
    • 4.1 File 作为接收端
    • 4.2 Elasticsearch 作为接收端

内容可能持续性修改完善,最新专栏内容与 spark-docs 同步,源码与 spark-advanced 同步。

1 问题描述

Spark StructuredStreaming 实时任务 kafka -> elasticsearchkafka -> hdfs(parquet格式文件) 任务运行过程中每隔固定时间后某个出现耗时较长。

本内容以kafka -> elasticsearch为例说明,生产环境版本号 Spark-2.4.0,下图为 SQL-UI Job 运行耗时情况:
job-sql-time

问题定位
分析耗时较长任务出现时间,发现出现该问题间隔时间点固定,怀疑是spark某种机制导致,与任务逻辑无关性较大。

查看指定的 checkpointPath 目录发现,在 $checkpointPath/sinks/elasticsearch 下与SQL-UI Job 长时间耗时的时间点一致。初步判断控制生成大文件的方式或者策略即可解决问题。
job-sink-es-checekpoint-compact

2 分析 checkpointLocation 配置

2.1 checkpointLocation 在源码调用链

分析源码查看 StructuredStreaming 启动流程发现,DataStreamWriter#start 方法启动一个 StreamingQuery
同时将 checkpointLocation 配置参数传递给StreamingQuery管理。

StreamingQuery 接口实现关系如下:
StreamingQuery_uml

  • StreamingQueryWrapper 仅包装了一个不可序列化的StreamExecution
  • StreamExecution 管理Spark SQL查询的执行器
    • MicroBatchExecution 微批处理执行器
    • ContinuousExecution 连续处理(流式)执行器

因此我们仅需要分析 checkpointLocation 在 StreamExecution中调用即可。

StreamExecution 中 protected def checkpointFile(name: String): String 方法为所有与 checkpointLocation 有关逻辑,该方法返回 $checkpointFile/name 路径

2.2 MetadataLog(元数据日志接口)

spark 提供了org.apache.spark.sql.execution.streaming.MetadataLog接口用于统一处理元数据日志信息。
checkpointLocation 文件内容均使用 MetadataLog进行维护。

分析 MetadataLog 接口实现关系如下:
MetadataLog_uml

各类作用说明

  • NullMetadataLog 空日志,即不输出日志直接丢弃
  • HDFSMetadataLog 使用 HDFS 作为元数据日志输出
    • CommitLog 提交日志
    • OffsetSeqLog 偏移量日志
    • CompactibleFileStreamLog 封装了支持按大小合并、删除历史记录的 MetadataLog
      • FileStreamSourceLog 文件类型作为数据源时日志记录
      • FileStreamSinkLog 文件类型作为数据接收端时日志记录
      • EsSinkMetadataLog Es作为数据接收端时日志记录

分析 CompactibleFileStreamLog#compact 合并逻辑简单描述为:

假设有 0,1,2,3,4,5,6,7,8,9,10 个批次依次到达,合并大小为3
当前合并结果为   `0,1,2.compact,3,4`
下一次合并结果为 `0,1,2.compact,3,4,5.compact` , **说明:5.compact 文件内容 = 2.compact + 3 + 4**last.compact 文件大小会随着批次运行无限增大
...

分析 CompactibleFileStreamLog 删除过期文件逻辑:

// CompactibleFileStreamLog#add 方法被调用时,默认会判断是否支持删除操作override def add(batchId: Long, logs: Array[T]): Boolean = {val batchAdded =if (isCompactionBatch(batchId, compactInterval)) { // 是否合并compact(batchId, logs)} else {super.add(batchId, logs)}if (batchAdded && isDeletingExpiredLog) { // 添加成功且支持删除过期文件// 删除时判断当前批次是否在 spark.sql.streaming.minBatchesToRetain 配置以外且在文件保留时间内// 配置项参考 第4节 解决方案配置说明deleteExpiredLog(batchId) }batchAdded}

3 分析 checkpointLocation 目录内容

目前 checkpointLocation 内容主要包含以下几个目录(子小节中逐个介绍目录数据来源及功能性)

  • offsets
  • commits
  • metadata
  • sources
  • sinks

3.1 offsets 目录

记录每个批次中的偏移量。为了保证给定的批次始终包含相同的数据,在处理数据前将其写入此日志记录。
此日志中的第 N 条记录表示当前正在已处理,第 N-1 个条目指示哪些偏移已处理完成。

// StreamExecution 类中声明了 OffsetSeqLog 变量进行操作
val offsetLog = new OffsetSeqLog(sparkSession, checkpointFile("offsets"))// 该日志示例内容如下,文件路径=checkpointLocation/offsets/560504
v1
{"batchWatermarkMs":0,"batchTimestampMs":1574315160001,"conf":{"spark.sql.streaming.stateStore.providerClass":"org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider","spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion":"2","spark.sql.streaming.multipleWatermarkPolicy":"min","spark.sql.streaming.aggregation.stateFormatVersion":"2","spark.sql.shuffle.partitions":"200"}}
{"game_dc_real_normal":{"17":279843310,"8":318732102,"11":290676804,"2":292352132,"5":337789356,"14":277147358,"13":334833752,"4":319279439,"16":314038811,"7":361740056,"1":281418138,"10":276872234,"9":244398684,"3":334708621,"12":290208334,"15":267180971,"6":296588360,"0":350011707}}

3.2 commitLog 目录

记录已完成的批次,重启任务检查完成的批次与 offsets 批次记录比对,确定接下来运行的批次

// StreamExecution 类中声明了 CommitLog 变量进行操作
val commitLog = new CommitLog(sparkSession, checkpointFile("commits"))// 该日志示例内容如下,文件路径=checkpointLocation/commits/560504
v1
{"nextBatchWatermarkMs":0}

3.3 metadata 目录

metadata 与整个查询关联的元数据,目前仅保留当前job id

// StreamExecution 类中声明了 StreamMetadata 变量进行操作,策略如下:/** Metadata associated with the whole query */protected val streamMetadata: StreamMetadata = {val metadataPath = new Path(checkpointFile("metadata"))val hadoopConf = sparkSession.sessionState.newHadoopConf()StreamMetadata.read(metadataPath, hadoopConf).getOrElse {val newMetadata = new StreamMetadata(UUID.randomUUID.toString)StreamMetadata.write(newMetadata, metadataPath, hadoopConf)newMetadata}}// 该日志示例内容如下,文件路径=checkpointLocation/metadata
{"id":"5314beeb-6026-485b-947a-cb088a9c9bac"}

3.4 sources 目录

sources 目录为数据源(Source)时各个批次读取详情

3.5 sinks 目录

sinks 目录为数据接收端(Sink)时批次的写出详情

例如: es 作为 sink 时,内容如下

目前 Es 支持配置自定义写出目录,如果未配置写入 checkpointLocation/sinks/ 目录,参考SparkSqlStreamingConfigs

文件路径=checkpointLocation/sinks/elasticsearch/560504
v1
{"taskId":0,"execTimeMillis":1574302020143,"resource":"rs_real_{app}.{dt}","records":220}
{"taskId":1,"execTimeMillis":1574302020151,"resource":"rs_real_{app}.{dt}","records":221}
{"taskId":2,"execTimeMillis":1574302020154,"resource":"rs_real_{app}.{dt}","records":219}
{"taskId":3,"execTimeMillis":1574302020151,"resource":"rs_real_{app}.{dt}","records":221}
{"taskId":4,"execTimeMillis":1574302020154,"resource":"rs_real_{app}.{dt}","records":220} 


例如: 文件类型作为 sink,默认写出到各个 $path/_spark_metadata 目录下 ,参考 FileStreamSink

hdfs 写出时内容为,文件路径=$path/_spark_metadata/560504
v1
{"path":"hdfs://xx:8020/$path/1.c000.snappy.parquet","size":8937,"isDir":false,"modificationTime":1574321763584,"blockReplication":2,"blockSize":134217728,"action":"add"}
{"path":"hdfs://xx:8020/$path/2.c000.snappy.parquet","size":11786,"isDir":false,"modificationTime":1574321763596,"blockReplication":2,"blockSize":134217728,"action":"add"}

4 解决方案

根据实际业务情况合理调整日志输出参数(配置见4.1/4.2说明):

  • 关闭日志输出
  • 控制保留并可以恢复的最小批次数量且减小日志文件保留时间
  • 调整日志文件合并阈值

无论如何调整参数,.compact(合并的文件)大小会一直增长,目前关闭可以解决。调整其他阈值可减小任务出现耗时情况次数。
针对该问题已提交给官方 SPARK-29995尝试解决

4.1 File 作为数据源或者数据接收端

  • spark.sql.streaming.minBatchesToRetain (默认100) 保留并可以恢复的最小批次数量
  • spark.sql.streaming.commitProtocolClass 默认:org.apache.spark.sql.execution.streaming.ManifestFileCommitProtocol 合并实现类,其余支持实现参考FileCommitProtocol实现类

fileSource 数据源端:配置在 FileStreamSourceLog 引用

  • spark.sql.streaming.fileSource.log.deletion (默认true),删除过期日志文件
  • spark.sql.streaming.fileSource.log.compactInterval (默认10),日志文件合并阈值
  • spark.sql.streaming.fileSource.log.cleanupDelay (默认10m),日志文件保留时间

fileSink 接收端:配置在 FileStreamSinkLog 引用

  • spark.sql.streaming.fileSink.log.deletion (默认true),删除过期日志文件CompactibleFileStreamLog
  • spark.sql.streaming.fileSink.log.compactInterval (默认10),日志文件合并阈值
  • spark.sql.streaming.fileSink.log.cleanupDelay (默认10m),日志文件保留时间

4.2 Elasticsearch 作为接收端

elasticsearch-spark 官方文档,es 官方重写变量命名及赋值方式,参考EsSinkMetadataLog

  • es.spark.sql.streaming.sink.log.enabled(默认true) 启用或禁用流作业的提交日志。默认情况下,该日志处于启用状态,并且具有相同批次ID的输出批次将被跳过,以避免重复写入。设置false为时,将禁用提交日志,并且所有输出都将发送到Elasticsearch,无论它们是否在先前的执行中已发送。
  • es.spark.sql.streaming.sink.log.path 设置存储此流查询的日志数据的位置。如果未设置此值,那么Elasticsearch接收器会将其提交日志存储在中给定的路径下checkpointLocation。任何与HDFS客户端兼容的URI都是可以接受的。
  • es.spark.sql.streaming.sink.log.cleanupDelay(默认10m) 提交日志通过Spark的HDFS客户端进行管理。一些与HDFS兼容的文件系统(例如Amazon的S3)以异步方式传播文件更改。为了解决这个问题,在压缩了一组日志文件之后,客户端将等待此时间,然后再清理旧文件。
  • es.spark.sql.streaming.sink.log.deletion(默认true) 确定日志是否应删除不再需要的旧日志。提交每个批次后,客户端将检查是否有已压缩且可以安全删除的提交日志。如果设置为false,日志将跳过此清理步骤,为每个批次保留一个提交文件。
  • es.spark.sql.streaming.sink.log.compactInterval(默认10) 设置压缩日志文件之前要处理的批次数。默认情况下,每10批提交日志将被压缩为一个包含所有以前提交的批ID的文件。

这篇关于Spark-StructuredStreaming checkpointLocation分析、优化耗时的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027168

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制