Python量化交易学习——Part5:通过相关系数选择对收益率影响比重大的因子(1)

本文主要是介绍Python量化交易学习——Part5:通过相关系数选择对收益率影响比重大的因子(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一节中我们学习了如何通过单因子策略进行股票交易,在实际的股市中,因子(也就是指标)数量往往非常之多,比如市盈率/市净率/净资产收益率等,在使用这些因子的过程中,我们会发现有的因子与收益率为正相关,有的因子为负相关,而有些因子几乎完全无关。
所以我们可以通过计算不同因子与收益率的相关系数,得到可以指导我们进行操作的因子。相关系数最大值为1,当相关系数大于0.5时,就可以认为该指标是有效指标,当相关系数小于-0.5时,就可以认为该指标是反向指标,当相关系数接近0的时候,该指标就是无效指标,这个就是基于IC值的多因子计算方法的通俗解释。

基于IC值的多因子计算方法

因子IC法来自于多因子模型的打分法,指的是选用若干能够对股票未来时间段收益产生预测作用的因子,根据每个因子在对应位置的状况给出股票在该位置上的得分,然后按照一定的权重将各个因子的得分相加,从而得到该股票各个因子的最终得分。
因此在打分模型中,各个因子的权重设定和计算非常重要,即使是非常好的因子,在权重配置下也可能会有不好的结果。
IC的计算公式如下:
在这里插入图片描述
从公式中可以看到,IC的计算公式实际上就是不同序列的相关系数的计算,那么IC值的计算用一句话解释就是:“IC值为因子与对应的下个周期收益率之间的相关系数“。python中的Numpy工具包提供了非常方便的计算方法,即corrcoef函数:

corr = np.corrcoef()  #计算相关系数

假设不同股票在某个时间段对应的因子值和下期的收益率如下表所示:

因子A因子B下期收益率
股票a620.02
股票b140.004
股票c280.005
股票d790.007

我们可以计算不同因子对收益率影响的系数大小(即IC值)

import numpy as np
factor_A = [6,1,2,7]
factor_B = [2,4,8,9]
return_profit = [0.02,0.004,0.005,0.007]
coef_matrix_A = np.corrcoef(factor_A,return_profit) #求factor_A 和 return_matrix 之间的相关系数
coef_matrix_B = np.corrcoef(factor_B,return_profit) #求factor_B 和 return_matrix 之间的相关系数
coef_A = coef_matrix_A[0, 1] #提取第0行,第1列的数值,即相关系数
coef_B = coef_matrix_B[0, 1] #提取第0行,第1列的数值,即相关系数
print(coef_A,coef_B)

运行结果如下:

这篇关于Python量化交易学习——Part5:通过相关系数选择对收益率影响比重大的因子(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026824

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核