从 AdaBoost 到随机森林:深入解析集成学习方法【集成学习】

2024-06-03 10:52

本文主要是介绍从 AdaBoost 到随机森林:深入解析集成学习方法【集成学习】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

集成学习的思想

集成学习是一种通过组合多个基学习器(弱学习器)来提高模型预测性能的机器学习方法。集成学习的思想类似于谚语“三个臭皮匠,顶个诸葛亮”,即通过集成多个表现较差的学习器,可以获得一个强大的整体模型。

什么是学习器?

  1. 强学习器:如神经网络等,通常具有较高的预测准确性,但需要大量的数据和计算资源来训练。
  2. 弱学习器:如逻辑回归等,个体性能较差,但计算代价低,容易训练。

集成学习的优点

  • 提高准确性:通过组合多个弱学习器,能显著提高模型的预测准确性。
  • 适应性强:适用于各种类型的数据和问题,应用范围广泛。

集成学习的核心问题

  1. 如何获得个体学习器

    • 个体学习器需要有所差异,这可以通过改变训练数据的 权值概率分布 来实现。例如,增大某类数据的权值,使其在训练中占据更重要的位置。
  2. 如何组合个体学习器

    • 最常见的组合方式是 线性相加 ,但也有其他方式,如投票法等。

Boosting 和 Bagging 的定义与机制

基于上述两个核心问题,Boosting和Bagging应运而生,它们分别采用不同的方法来解决这些问题。

Boosting

定义:Boosting意为“增强”,通过逐步调整弱学习器来提高模型的性能。

工作机制

  1. 获得个体学习器

    • Boosting按顺序(串行)训练多个弱学习器,每个学习器都试图修正前一个学习器的错误。
    • 每次训练后,样本的权重会根据前一个学习器的表现进行调整。错误分类的样本权重会增加,而正确分类的样本权重会减少。这样,后续的学习器会更加关注难以分类的样本。
  2. 组合个体学习器

    • 最终模型是多个弱学习器的加权组合(加法模型),这些学习器共同决定预测结果。

代表方法:AdaBoost、GBDT(梯度提升决策树)、XGBoost、LightGBM。

  1. AdaBoost:最经典的Boosting方法,通过不断调整样本权重,聚焦于被前一轮分类错误的样本。

    • 权重调整:初始时,每个样本的权重相同。每一轮训练后,错误分类的样本权重增加,正确分类的样本权重减少。
    • 组合策略:通过加权投票来决定最终分类结果。
  2. GBDT:利用梯度提升的思想,逐步减小预测误差,通过多个决策树的累加来逼近真实值。

    • 误差减少:每一轮训练基学习器时,GBDT会拟合前一轮的残差,即真实值与预测值之间的差距。
    • 组合策略:通过累加所有基学习器的预测结果来做最终预测。
  3. XGBoost:在GBDT的基础上进行了改进,提供了更高效的计算和更强的正则化功能。

    • 改进点:采用二阶导数信息、并行计算、正则化处理等,提升了训练速度和模型性能。
    • 组合策略:与GBDT类似,通过 累加 各基学习器的预测结果。
  4. LightGBM:优化了XGBoost的算法,能够处理更大规模的数据集,训练速度更快。

    • 特征分裂:采用基于直方图的决策树算法,减少了数据扫描次数,提升了训练速度。
    • 组合策略:与XGBoost相似,通过累加预测结果。

示例:以AdaBoost为例,它通过不断调整样本权重,聚焦于被前一轮分类错误的样本。每个学习器的输出通过加权投票来决定最终分类结果。

Bagging

定义:Bagging是“Bootstrap Aggregating”的缩写,通过并行训练多个弱学习器来提高模型的稳定性和准确性。

工作机制

  1. 获得个体学习器

    • Bagging从原始数据集中随机抽取多个子集(通常是有放回的抽样),每个子集用于训练一个独立的弱学习器。
  2. 组合个体学习器

    • 分类问题中通过投票决定最终结果,回归问题中通过计算平均值决定最终预测。

代表方法:随机森林(Random Forest)。

  1. 随机森林:Bagging的经典应用,通过随机抽样生成多个决策树,同时对特征进行随机选择,提高了模型的多样性和鲁棒性。
    • 抽样策略:采用放回抽样方法,从原始数据集中随机抽取子集,每个子集训练一个决策树。
    • 特征随机性:每个决策树在节点分裂时,随机选择部分特征进行最佳分裂,提高了模型的多样性。
    • 组合策略:分类问题通过多数 投票 决定最终结果,回归问题通过 取均值 得到最终预测。

示例:随机森林通过随机抽样生成多个决策树,同时对特征进行随机选择,提高了模型的多样性和鲁棒性。最终结果通过多数投票(分类)或取均值(回归)得出。

总结

集成学习方法通过组合多个基学习器,提高了模型的预测能力和鲁棒性。Boosting和Bagging作为集成学习的两种主要策略,通过不同的机制和策略来提升模型的性能。Boosting通过 串行训练 和加权调整样本权重,重点关注难分类的样本,而Bagging通过 并行训练 和随机抽样生成多样化的训练集,提升模型的稳定性和准确性。

这篇关于从 AdaBoost 到随机森林:深入解析集成学习方法【集成学习】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026780

相关文章

Spring Security方法级安全控制@PreAuthorize注解的灵活运用小结

《SpringSecurity方法级安全控制@PreAuthorize注解的灵活运用小结》本文将带着大家讲解@PreAuthorize注解的核心原理、SpEL表达式机制,并通过的示例代码演示如... 目录1. 前言2. @PreAuthorize 注解简介3. @PreAuthorize 核心原理解析拦截与

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

CSS去除a标签的下划线的几种方法

《CSS去除a标签的下划线的几种方法》本文给大家分享在CSS中,去除a标签(超链接)的下划线的几种方法,本文给大家介绍的非常详细,感兴趣的朋友一起看看吧... 在 css 中,去除a标签(超链接)的下划线主要有以下几种方法:使用text-decoration属性通用选择器设置:使用a标签选择器,将tex

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat