线性代数|机器学习-P4正交矩阵中的标准正交向量

2024-06-03 10:44

本文主要是介绍线性代数|机器学习-P4正交矩阵中的标准正交向量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 正交矩阵Q
    • 1.1 矩阵Q的推导
    • 1.2 |Qx|=|x|
  • 2. 常见正交矩阵
    • 2.1 旋转矩阵
    • 2.2 镜像矩阵
    • 2.3 Householder矩阵
    • 2.4 Hadamard矩阵
    • 2.4 小波矩阵
    • 2.5 傅里叶级数矩阵

1. 正交矩阵Q

1.1 矩阵Q的推导

方阵A正交的充要条件是A的行(列)向量组是单位正交向量组. 我们定义正交矩阵Q表示如下:
Q = [ q 1 q 2 ⋯ q n ] ; q i T q j = { 1 , i = j 0 , i ≠ j \begin{equation} Q=\begin{bmatrix}q_1&q_2&\cdots&q_n\end{bmatrix};q_i^Tq_j=\left\{ \begin{aligned} 1&,i=j \\ 0&,i\neq j \\ \end{aligned} \right. \end{equation} Q=[q1q2qn]qiTqj={10,i=j,i=j

  • 对矩阵Q展开可得:
    Q T Q = [ q 1 T q 2 T ⋮ q n T ] [ q 1 q 2 ⋯ q n ] = [ q 1 T q 1 q 1 T q 2 ⋯ q 1 T q n q 2 T q 1 q 2 T q 2 ⋯ q 2 T q n ⋮ ⋮ ⋮ ⋮ q n T q 1 q n T q 2 ⋯ q n T q n ] = [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 ] \begin{equation} Q^TQ=\begin{bmatrix}q_1^T\\\\q_2^T\\\\\vdots \\\\q_n^T\end{bmatrix}\begin{bmatrix}q_1&q_2&\cdots &q_n\end{bmatrix}=\begin{bmatrix} q_1^Tq_1&q_1^Tq_2&\cdots&q_1^Tq_n\\\\ q_2^Tq_1&q_2^Tq_2&\cdots&q_2^Tq_n\\\\ \vdots&\vdots&\vdots&\vdots\\\\ q_n^Tq_1&q_n^Tq_2&\cdots&q_n^Tq_n \end{bmatrix}=\begin{bmatrix} 1&0&\cdots&0\\\\ 0&1&\cdots&0\\\\ \vdots&\vdots&\vdots&\vdots\\\\ 0&0&\cdots&1 \end{bmatrix} \end{equation} QTQ= q1Tq2TqnT [q1q2qn]= q1Tq1q2Tq1qnTq1q1Tq2q2Tq2qnTq2q1Tqnq2TqnqnTqn = 100010001

1.2 |Qx|=|x|

首先我们知道对于一个正交矩阵Q来说,满足: Q T Q = I Q^TQ=I QTQ=I

  • 两边分别乘以 x T , x x^T,x xT,x
    x T Q T Q x = x T x → ( Q x ) T ( Q x ) = x T x → ∣ Q x ∣ 2 = ∣ x ∣ 2 → ∣ Q x ∣ = ∣ x ∣ \begin{equation} x^TQ^TQx=x^Tx\rightarrow (Qx)^T(Qx)=x^Tx\rightarrow |Qx|^2=|x|^2\rightarrow |Qx|=|x| \end{equation} xTQTQx=xTx(Qx)T(Qx)=xTxQx2=x2Qx=x
  • 小结:也就是说,对于任意向量x来说,我们设计一个正交矩阵Q,在不断地左乘矩阵Q的时候,因为 ∣ Q x ∣ = ∣ x ∣ |Qx|=|x| Qx=x的原因,所以矩阵大小值不会变,这点在计算编程中至关重要,这样的话,我们就可以保证矩阵相乘的时候值不会溢出。

2. 常见正交矩阵

对称矩阵和正交矩阵的特征向量组为正交单位向量,所以我们为了方便后续的快速计算,我们希望直接找正交矩阵和对称矩阵。

2.1 旋转矩阵

  • 我们将向量在保持大小不变的情况下,逆时针旋转 θ \theta θ, 我们分别看看向量 x 1 = [ 0 , 1 ] T , x 2 = [ 1 , 0 ] T x_1=[0,1]^T,x_2=[1,0]^T x1=[0,1]T,x2=[1,0]T变化结果,如图所述:
    A = [ 1 0 ] → A 1 = [ cos ⁡ θ sin ⁡ θ ] ; B = [ 0 1 ] → B 1 = [ − sin ⁡ θ cos ⁡ θ ] \begin{equation} A=\begin{bmatrix} 1\\\\0 \end{bmatrix}\rightarrow A_1=\begin{bmatrix} \cos{\theta}\\\\\sin{\theta} \end{bmatrix};B=\begin{bmatrix} 0\\\\1 \end{bmatrix}\rightarrow B_1=\begin{bmatrix} -\sin{\theta}\\\\\cos{\theta} \end{bmatrix} \end{equation} A= 10 A1= cosθsinθ ;B= 01 B1= sinθcosθ
  • 可得旋转矩阵Q表示如下:
    Q = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] \begin{equation} Q=\begin{bmatrix} \cos{\theta}&-\sin{\theta}\\\\ \sin{\theta}&\cos{\theta} \end{bmatrix} \end{equation} Q= cosθsinθsinθcosθ
    在这里插入图片描述

2.2 镜像矩阵

  • 我们将向量在保持大小不变的情况下,沿着 1 2 θ \frac{1}{2}\theta 21θ镜像, 我们分别看看向量 x 1 = [ 0 , 1 ] T , x 2 = [ 1 , 0 ] T x_1=[0,1]^T,x_2=[1,0]^T x1=[0,1]T,x2=[1,0]T变化结果,如图所述:
    A = [ 1 0 ] → A 1 = [ cos ⁡ θ sin ⁡ θ ] ; B = [ 0 1 ] → B 1 = [ sin ⁡ θ − cos ⁡ θ ] \begin{equation} A=\begin{bmatrix} 1\\\\0 \end{bmatrix}\rightarrow A_1=\begin{bmatrix} \cos{\theta}\\\\\sin{\theta} \end{bmatrix};B=\begin{bmatrix} 0\\\\1 \end{bmatrix}\rightarrow B_1=\begin{bmatrix} \sin{\theta}\\\\-\cos{\theta} \end{bmatrix} \end{equation} A= 10 A1= cosθsinθ ;B= 01 B1= sinθcosθ
  • 可得旋转矩阵Q表示如下:
    R e f l e c t i o n = [ cos ⁡ θ sin ⁡ θ sin ⁡ θ − cos ⁡ θ ] \begin{equation} Reflection=\begin{bmatrix} \cos{\theta}&\sin{\theta}\\\\ \sin{\theta}&-\cos{\theta} \end{bmatrix} \end{equation} Reflection= cosθsinθsinθcosθ
    在这里插入图片描述

2.3 Householder矩阵

householder变换的作用是将向量x的第一项值为|x|,其他值不变,相当于将x通过镜面反射得到y

  • x:为我们输入的向量x

  • y:为经过householder变换后向量y

  • w: x-y=2w,等腰三角形底边相等

  • u:定义跟w平行的单位向量u,|u|=1;
    在这里插入图片描述

  • 根据 u T x u^Tx uTx公式可得,|u|=1
    u T x = ∣ x ∣ ∣ u T ∣ cos ⁡ α = ∣ x ∣ cos ⁡ α = ∣ w ∣ \begin{equation} u^Tx=|x||u^T|\cos{\alpha}=|x|\cos{\alpha}=|w| \end{equation} uTx=x∣∣uTcosα=xcosα=w

  • 向量w,x,y之间的关系如下:
    y + 2 w = x , 2 w = 2 ∣ w ∣ u = 2 u T x u \begin{equation} y+2w=x,2w=2|w|u=2u^Txu \end{equation} y+2w=x,2w=2∣wu=2uTxu

  • 因为 u T x u^Tx uTx为一个数,可以任意放位置
    y + 2 u u T x = x → y = ( I − 2 u u T ) x \begin{equation} y+2uu^Tx=x\rightarrow y=(I-2uu^T)x \end{equation} y+2uuTx=xy=(I2uuT)x

  • 这里我们可以将H定义为如下:
    y = H x ; H = I − 2 u u T ; y = ( I − 2 u u T ) x \begin{equation} y=Hx;H=I-2uu^T;y=(I-2uu^T)x \end{equation} y=Hx;H=I2uuT;y=(I2uuT)x

  • Householder矩阵,对称性,正交性。
    H = I − 2 u u T → H T = I − 2 u u T = H , H T H = I − 2 u u T − 2 u u T + 4 u u T u u T = I \begin{equation} H=I-2uu^T\rightarrow H^T=I-2uu^T=H,H^TH=I-2uu^T-2uu^T+4uu^Tuu^T=I \end{equation} H=I2uuTHT=I2uuT=H,HTH=I2uuT2uuT+4uuTuuT=I

2.4 Hadamard矩阵

哈达玛(Hadamard)矩阵;

  • H 2 , H 4 H_2,H_4 H2,H4
    H 2 = [ 1 1 1 − 1 ] ; H 4 = [ H 2 H 2 H 2 − H 2 ] = [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ] \begin{equation} H_2=\begin{bmatrix} 1&1\\\\ 1&-1 \end{bmatrix};H_4=\begin{bmatrix} H_2&H_2\\\\ H_2&-H_2 \end{bmatrix}= \begin{bmatrix} 1&1&1&1\\\\ 1&-1&1&-1\\\\ 1&1&-1&-1\\\\ 1&-1&-1&1\\\\ \end{bmatrix} \end{equation} H2= 1111 ;H4= H2H2H2H2 = 1111111111111111

2.4 小波矩阵

我们知道小波矩阵也是一个正交矩阵
在这里插入图片描述

2.5 傅里叶级数矩阵

我们这里要引入复数i,这里先定义,后面再详细展开
F 4 = [ 1 1 1 1 1 i i 2 i 3 1 i 2 i 4 i 6 1 i 3 i 6 i 9 ] \begin{equation} F_4=\begin{bmatrix} 1&1&1&1\\\\ 1&i&i^2&i^3\\\\ 1&i^2&i^4&i^6\\\\ 1&i^3&i^6&i^9 \end{bmatrix} \end{equation} F4= 11111ii2i31i2i4i61i3i6i9

  • 注意,这里第二列和第四列之间正交需要取共轭复数,具体如下:
    f 1 = [ 1 i i 2 i 3 ] = [ 1 i − 1 − i ] → f 1 H = [ 1 − i − 1 i ] \begin{equation} f_1=\begin{bmatrix} 1\\\\i\\\\i^2\\\\i^3 \end{bmatrix}=\begin{bmatrix} 1\\\\i\\\\-1\\\\-i \end{bmatrix}\rightarrow f_1^H=\begin{bmatrix}1&-i&-1&i\end{bmatrix} \end{equation} f1= 1ii2i3 = 1i1i f1H=[1i1i]
    f 4 = [ 1 i 3 i 6 i 9 ] = [ 1 − i 1 − i ] → f 1 H f 4 = [ 1 − i − 1 i ] [ 1 − i 1 − i ] = 1 + i 2 − 1 − i 2 = 0 \begin{equation} f_4=\begin{bmatrix} 1\\\\i^3\\\\i^6\\\\i^9 \end{bmatrix}=\begin{bmatrix} 1\\\\-i\\\\1\\\\-i \end{bmatrix}\rightarrow f_1^Hf_4=\begin{bmatrix}1&-i&-1&i\end{bmatrix}\begin{bmatrix} 1\\\\-i\\\\1\\\\-i \end{bmatrix}=1+i^2-1-i^2=0 \end{equation} f4= 1i3i6i9 = 1i1i f1Hf4=[1i1i] 1i1i =1+i21i2=0
  • 同理,可以逐个计算得到 F 4 F_4 F4的列向量相互正交。

这篇关于线性代数|机器学习-P4正交矩阵中的标准正交向量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026759

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学