Redis 布隆过滤器实战「缓存击穿、雪崩效应」

2024-06-03 09:38

本文主要是介绍Redis 布隆过滤器实战「缓存击穿、雪崩效应」,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Java高级互联网架构 2019-03-22 13:52:38

为什么引入

我们的业务中经常会遇到穿库的问题,通常可以通过缓存解决。 如果数据维度比较多,结果数据集合比较大时,缓存的效果就不明显了。 因此为了解决穿库的问题,我们引入Bloom Filter。

我们先看看一般业务缓存流程:

Redis 布隆过滤器实战「缓存击穿、雪崩效应」

 

先查询缓存,缓存不命中再查询数据库。 然后将查询结果放在缓存中即使数据不存在,也需要创建一个缓存,用来防止穿库。这里需要区分一下数据是否存在。 如果数据不存在,缓存时间可以设置相对较短,防止因为主从同步等问题,导致问题被放大。

这个流程中存在薄弱的问题是,当用户量太大时,我们会缓存大量数据空数据,并且一旦来一波冷用户,会造成雪崩效应。 对于这种情况,我们产生第二个版本流程:redis过滤冷用户缓存流程

Redis 布隆过滤器实战「缓存击穿、雪崩效应」

 

我们将数据库里面,命中的用户放在redis的set类型中,设置不过期。 这样相当把redis当作数据库的索引,只要查询redis,就可以知道是否数据存在。 redis中不存在就可以直接返回结果。 如果存在就按照上面提到一般业务缓存流程处理。

聪明的你肯定会想到更多的问题:

  1. redis本身可以做缓存,为什么不直接返回数据呢?
  2. 如果数据量比较大,单个set,会有性能问题?
  3. 业务不重要,将全量数据放在redis中,占用服务器大量内存。投入产出不成比例?

问题1需要区分业务场景,结果数据少,我们是可以直接使用redis作为缓存,直接返回数据。 结果比较大就不太适合用redis存放了。比如ugc内容,一个评论里面可能存在上万字,业务字段多。

redis使用有很多技巧。bigkey 危害比较大,无论是扩容或缩容带来的内存申请释放, 还是查询命令使用不当导致大量数据返回,都会影响redis的稳定。这里就不细谈原因及危害了。 解决bigkey 方法很简单。我们可以使用hash函数来分桶,将数据分散到多个key中。 减少单个key的大小,同时不影响查询效率。

问题3是redis存储占用内存太大。因此我们需要减少内存使用。 重新思考一下引入redis的目的。 redis像一个集合,整个业务就是验证请求的参数是否在集合中。

Redis 布隆过滤器实战「缓存击穿、雪崩效应」

 

这个结构就像洗澡的时候用的双向阀门:左边热水,右边冷水。大部分的编程语言都内置了filter。 拿python举例,filter函数用于过滤序列, 过滤掉不符合条件的元素,返回由符合条件元素组成的列表。

我们看个例子:

$ python2

Python 2.7.10 (default, Oct 6 2017, 22:29:07)

[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.31)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> s = {2, 4}

>>> filter(lambda x:x in s, [0, 1, 2])

[2]

集合s中存在 2,4两个数字,我们需要查询 0,1,2 那些在集合s中。 lambda x:x in s构造一个匿名函数,判断入参x是否在集合s中。 过滤器filter依次对列表中的数字执行匿名函数。最终返回列表[2]。

redis中实现set用了两种结构:intset和hash table。 非数字或者大量数字时都会退化成hash table。 那么是否好的算法可以节省hash table的大小呢?

其实早在1970年由Burton Howard Bloom提出的布隆过滤器(英语:Bloom Filter)。 它实际上是一个很长的二进制向量和一系列随机映射函数。 布隆过滤器可以用于检索一个元素是否在一个集合中。 它的优点是空间效率和查询时间都远远超过一般的算法, 缺点是有一定的误识别率和删除困难。

BloomFilter原理

我们常见的将业务字段拼接之后md5,放在一个集合中。 md5生成一个固定长度的128bit的串。 如果我们用bitmap来表示,则需要

2**128 = 340282366920938463463374607431768211456 bit

判断一个值在不在,就变成在这个bitmap中判断所在位是否为1。 但是我们全世界的机器存储空间也无法存储下载。 因此我们只能分配有限的空间来存储。 比如:

import crc32
def BloomFilter(sample, size, hash_size=1):# 构造一个hash函数,将输入数据散列到size一个位置上hash = lambda x:crc32(str(x).encode())%sizecollision, s = 0, set()for i in range(sample):k = set()for j in range(hash_size):k.add(hash(i+j*size/hash_size))# 只有所有散列结果k都在s中,才认为i重复if not k - s:collision += 1continue# 将散列结果k更新到集合s中s |= kreturn collision

当只有一个hash函数时:很容易发生冲突。

Redis 布隆过滤器实战「缓存击穿、雪崩效应」

 

可以看到上面1和2的hash结果都是7,发生冲突。 如果增加hash函数,会发生什么情况?

Redis 布隆过滤器实战「缓存击穿、雪崩效应」

 

我们使用更多的hash函数和更大的数据集合来测试。得到下面这张表

Redis 布隆过滤器实战「缓存击穿、雪崩效应」

 

由此可以看到当增加hash方法能够有效的降低碰撞机率。 比较好的数据如下:

Redis 布隆过滤器实战「缓存击穿、雪崩效应」

 

但是增加了hash方法之后,会降低空间的使用效率。当集合占用总体空间达到25%的时候, 增加hash 的效果已经不明显

Redis 布隆过滤器实战「缓存击穿、雪崩效应」

 

上面的使用多个hash方法来降低碰撞就是BloomFilter的核心思想。

适合的场景

  • 数据库防止穿库 Google Bigtable,Apache HBase和Apache Cassandra以及Postgresql 使用BloomFilter来减少不存在的行或列的磁盘查找。避免代价高昂的磁盘查找会大大提高数据库查询操作的性能。 如同一开始的业务场景。如果数据量较大,不方便放在缓存中。需要对请求做拦截防止穿库。
  • 缓存宕机 缓存宕机的场景,使用布隆过滤器会造成一定程度的误判。原因是除了Bloom Filter 本身有误判率,宕机之前的缓存不一定能覆盖到所有DB中的数据,当宕机后用户请求了一个以前从未请求的数据,这个时候就会产生误判。当然,缓存宕机时使用布隆过滤器作为应急的方式,这种情况应该也是可以忍受的。
  • WEB拦截器 相同请求拦截防止被攻击。用户第一次请求,将请求参数放入BloomFilter中,当第二次请求时,先判断请求参数是否被BloomFilter命中。可以提高缓存命中率
  • 恶意地址检测 chrome 浏览器检查是否是恶意地址。 首先针对本地BloomFilter检查任何URL,并且仅当BloomFilter返回肯定结果时才对所执行的URL进行全面检查(并且用户警告,如果它也返回肯定结果)。
  • 比特币加速 bitcoin 使用BloomFilter来加速钱包同步。

算法优点:

  • 数据空间小,不用存储数据本身。

算法本身缺点:

  • 元素可以添加到集合中,但不能被删除。
  • 匹配结果只能是“绝对不在集合中”,并不能保证匹配成功的值已经在集合中。
  • 当集合快满时,即接近预估最大容量时,误报的概率会变大。
  • 数据占用空间放大。一般来说,对于1%的误报概率,每个元素少于10比特,与集合中的元素的大小或数量无关。 - 查询过程变慢,hash函数增多,导致每次匹配过程,需要查找多个位(hash个数)来确认是否存在。

对于BloomFilter的优点来说,缺点都可以忽略。毕竟只需要kN的存储空间就能存储N个元素。空间效率十分优秀。

如何使用BloomFilter

BloomFilter 需要一个大的bitmap来存储。鉴于目前公司现状,最好的存储容器是redis。

redis集成BloomFilter方案:

redis集成BloomFilter方案:

  • 原生python 调用setbit 构造 BloomFilter
  • lua脚本
  • Rebloom - Bloom Filter Module for Redis (注:redis Module在redis4.0引入)
  • 使用hiredis 调用redis pyreBloom

原生python 方法太慢,lua脚本和module 部署比较麻烦。于是我们推荐使用pyreBloom,底层使用。

pyreBloom:master λ ls
Makefile bloom.h bloom.pxd murmur.c pyreBloom.pyx
bloom.c bloom.o main.c pyreBloom.c

从文件命名上可以看到bloom 使用c编写。pyreBloom 使用cython编写。

bloom.h 里面实现BloomFilter的核心逻辑,完成与redis server的交互;hash函数;添加,检查和删除方法的实现。

int init_pyrebloom(pyrebloomctxt * ctxt, char * key, uint32_t capacity, double error, char* host, uint32_t port, char* password, uint32_t db);
int free_pyrebloom(pyrebloomctxt * ctxt);
int add(pyrebloomctxt * ctxt, const char * data, uint32_t len);
int add_complete(pyrebloomctxt * ctxt, uint32_t count);
int check(pyrebloomctxt * ctxt, const char * data, uint32_t len);
int check_next(pyrebloomctxt * ctxt);
int delete(pyrebloomctxt * ctxt);

pyreBloom.pyx

import math
import random
cimport bloom
class pyreBloomException(Exception):'''Some sort of exception has happened internally'''pass
cdef class pyreBloom(object):cdef bloom.pyrebloomctxt contextcdef bytes keyproperty bits:def __get__(self):return self.context.bitsproperty hashes:def __get__(self):return self.context.hashesdef __cinit__(self, key, capacity, error, host='127.0.0.1', port=6379,password='', db=0):self.key = keyif bloom.init_pyrebloom(&self.context, self.key, capacity,error, host, port, password, db):raise pyreBloomException(self.context.ctxt.errstr)def __dealloc__(self):bloom.free_pyrebloom(&self.context)def delete(self):bloom.delete(&self.context)def put(self, value):if getattr(value, '__iter__', False):r = [bloom.add(&self.context, v, len(v)) for v in value]r = bloom.add_complete(&self.context, len(value))else:bloom.add(&self.context, value, len(value))r = bloom.add_complete(&self.context, 1)if r < 0:raise pyreBloomException(self.context.ctxt.errstr)return rdef add(self, value):return self.put(value)def extend(self, values):return self.put(values)def contains(self, value):# If the object is 'iterable'...if getattr(value, '__iter__', False):r = [bloom.check(&self.context, v, len(v)) for v in value]r = [bloom.check_next(&self.context) for i in range(len(value))]if (min(r) < 0):raise pyreBloomException(self.context.ctxt.errstr)return [v for v, included in zip(value, r) if included]else:bloom.check(&self.context, value, len(value))r = bloom.check_next(&self.context)if (r < 0):raise pyreBloomException(self.context.ctxt.errstr)return bool(r)def __contains__(self, value):return self.contains(value)def keys(self):'''Return a list of the keys used in this bloom filter'''return [self.context.keys[i] for i in range(self.context.num_keys)]
原生pyreBloom方法:
cdef class pyreBloom(object):cdef bloom.pyrebloomctxt contextcdef bytesproperty bits:property hashes:// 使用的hash方法数def delete(self):// 删除,会在redis中删除def put(self, value):// 添加 底层方法, 不建议直接调用def add(self, value):// 添加单个元素,调用put方法def extend(self, values):// 添加一组元素,调用put方法def contains(self, value):// 检查是否存在,当`value`可以迭代时,返回`[value]`, 否则返回`bool`def keys(self):// 在redis中存储的key列表

由于pyreBloom使用hiredis库,本身没有重连等逻辑,于是错了简单的封装。

 # coding=utf-8'''bloom filter 基础模块可用方法:extend, keys, contains, add, put, hashes, bits, delete使用方法:>>> class TestModel(BaseModel):... PREFIX = "bf:test">>> t = TestModel()>>> t.add('hello')1>>> t.extend(['hi', 'world'])2>>> t.contains('hi')True>>> t.delete()'''import loggingfrom six import PY3 as IS_PY3from pyreBloom import pyreBloom, pyreBloomExceptionfrom BloomFilter.utils import force_utf8class BaseModel(object):'''bloom filter 基础模块参数:SLOT: 可用方法类型PREFIX: redis前缀BF_SIZE: 存储最大值BF_ERROR: 允许的出错率RETRIES: 连接重试次数host: redis 服务器IPport: redis 服务器端口db: redis 服务器DB_bf_conn: 内部保存`pyreBloom`实例'''SLOT = {'add', 'contains', 'extend', 'keys', 'put', 'delete','bits', 'hashes'}PREFIX = ""BF_SIZE = 100000BF_ERROR = 0.01RETRIES = 2def __init__(self, redis=None):'''初始化redis配置:param redis: redis 配置'''# 这里初始化防止类静态变量多个继承类复用,导致数据被污染self._bf_conn = Noneself._conf = {'host': '127.0.0.1', 'password': '','port': 6379, 'db': 0}if redis:for k, v in redis.items():if k in self._conf:self._conf[k] = redis[k]self._conf = force_utf8(self._conf)@propertydef bf_conn(self):'''初始化pyreBloom'''if not self._bf_conn:prefix = force_utf8(self.PREFIX)logging.debug('pyreBloom connect: redis://%s:%s/%s, (%s %s %s)',self._conf['host'], self._conf['port'], self._conf['db'],prefix, self.BF_SIZE, self.BF_ERROR,)self._bf_conn = pyreBloom(prefix, self.BF_SIZE, self.BF_ERROR, **self._conf)return self._bf_conndef __getattr__(self, method):'''调用pyrebloom方法没有枚举的方法将从`pyreBloom`中获取:param method::return: pyreBloom.{method}'''# 只提供内部方法if method not in self.SLOT:raise NotImplementedError()# 捕获`pyreBloom`的异常, 打印必要的日志def catch_error(*a, **kwargs):'''多次重试服务'''args = force_utf8(a)kwargs = force_utf8(kwargs)for _ in range(self.RETRIES):try:func = getattr(self.bf_conn, method)res = func(*args, **kwargs)# python3 返回值和python2返回值不相同,# 手工处理返回类型if method == 'contains' and IS_PY3:if isinstance(res, list):return [i.decode('utf8') for i in res]return resexcept pyreBloomException as error:logging.warn('pyreBloom Error: %s %s', method, str(error))self.reconnect()if _ == self.RETRIES:logging.error('pyreBloom Error')raise errorreturn catch_errordef __contains__(self, item):'''跳转__contains__方法:param item: 查询元素列表/单个元素:type item: list/basestring:return: [bool...]/bool'''return self.contains(item)def reconnect(self):'''重新连接bloom`pyreBloom` 连接使用c driver,没有提供timeout参数,使用了内置的timeout同时为了保证服务的可靠性,增加了多次重试机制。struct timeval timeout = { 1, 5000 };ctxt->ctxt = redisConnectWithTimeout(host, port, timeout);del self._bf_conn 会调用`pyreBloom`内置的C的del方法,会关闭redis连接'''if self._bf_conn:logging.debug('pyreBloom reconnect')del self._bf_connself._bf_conn = None_ = self.bf_conn

进阶:计数过滤器(Counting Filter)

提供了一种在BloomFilter上实现删除操作的方法,而无需重新创建过滤器。在计数滤波器中,阵列位置(桶)从单个位扩展为n位计数器。实际上,常规布隆过滤器可以被视为计数过滤器,其桶大小为一位。

插入操作被扩展为递增桶的值,并且查找操作检查每个所需的桶是否为非零。然后,删除操作包括递减每个桶的值。

存储桶的算术溢出是一个问题,并且存储桶应该足够大以使这种情况很少见。如果确实发生,则增量和减量操作必须将存储区设置为最大可能值,以便保留BloomFilter的属性。

计数器的大小通常为3或4位。因此,计算布隆过滤器的空间比静态布隆过滤器多3到4倍。相比之下, Pagh,Pagh和Rao(2005)以及Fan等人的数据结构。(2014)也允许删除但使用比静态BloomFilter更少的空间。

计数过滤器的另一个问题是可扩展性有限。由于无法扩展计数布隆过滤器表,因此必须事先知道要同时存储在过滤器中的最大键数。一旦超过表的设计容量,随着插入更多密钥,误报率将迅速增长。

Bonomi等人。(2006)引入了一种基于d-left散列的数据结构,它在功能上是等效的,但使用的空间大约是计算BloomFilter的一半。此数据结构中不会出现可伸缩性问题。一旦超出设计容量,就可以将密钥重新插入到双倍大小的新哈希表中。

Putze,Sanders和Singler(2007)的节省空间的变体也可用于通过支持插入和删除来实现计数过滤器。

Rottenstreich,Kanizo和Keslassy(2012)引入了一种基于变量增量的新通用方法,该方法显着提高了计算布隆过滤器及其变体的误报概率,同时仍支持删除。与计数布隆过滤器不同,在每个元素插入时,散列计数器以散列变量增量而不是单位增量递增。要查询元素,需要考虑计数器的确切值,而不仅仅是它们的正面性。如果由计数器值表示的总和不能由查询元素的相应变量增量组成,则可以将否定答案返回给查询。

这篇关于Redis 布隆过滤器实战「缓存击穿、雪崩效应」的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026628

相关文章

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

SpringBoot中配置Redis连接池的完整指南

《SpringBoot中配置Redis连接池的完整指南》这篇文章主要为大家详细介绍了SpringBoot中配置Redis连接池的完整指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以... 目录一、添加依赖二、配置 Redis 连接池三、测试 Redis 操作四、完整示例代码(一)pom.

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Redis在windows环境下如何启动

《Redis在windows环境下如何启动》:本文主要介绍Redis在windows环境下如何启动的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis在Windows环境下启动1.在redis的安装目录下2.输入·redis-server.exe

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S