【算法知识总结】Tamura纹理特征的前世今生

2024-06-03 01:38

本文主要是介绍【算法知识总结】Tamura纹理特征的前世今生,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tamura 纹理特征

我这篇文章主要是参考的Tamura纹理特征的matlab实现。本来没打算写这篇博客的,结果在写文章的时候各种找文献资料,都很难找到比较好的解释Tamura的文章。很多人的文章都是含糊其辞,要么就是排版稀烂,没法看。实在受不了自己写一个高大全的Tamura特征的博客,既方便自己也方便别人。

  • 原始出处
  • 原理解释
  • 代码展示

原始出处

最原始的Tamura的论文《Textural Features Corresponding to Visual Perception》,IEEE上的这篇论文,可以直接下载。
Tamura纹理特征在一些中文论文中也有出现,也有解释的不错的,我推荐*《Tamura纹理特征在水下目标分类中的应用》*但是基本都避开了Tamura特征中线性相关的三个特征。
我在网上还找了一个讲纹理特征计算的博客,里面讲了Tamura纹理特征,还算是比较细致的,也不错。

原理解释

Tamura纹理特征包括六个指标: 粗 糙 度 ( C o a r s e n e s s ) 、 对 比 度 ( C o n t r a s t ) 、 方 向 度 ( D i r e c t i o n a l i t y ) 、 线 性 度 ( L i n e l i k e n e s s ) 、 规 则 度 ( R e g u l a r i t y ) 、 粗 略 度 ( R o u g h n e s s ) 粗糙度(Coarseness)、对比度( Contrast)、方向度( Directionality)、线性度( Linelikeness)、规则度(Regularity)、粗略度(Roughness) CoarsenessContrastDirectionality线LinelikenessRegularityRoughness,一般论文里面只用前三个特征,说前面三个特征是线性无关的,后面三个特征和前面三个特征是线性相关的,因此只采用前三个特征。但是我发现其实线性度这个特征还是比较难解释的,单纯观察看到的代码而言。

$ 粗糙度(Coarseness)$

粗糙度是反映纹理中粒度的一个量,是最基本的纹理特征。当两种纹理特征模式知识基元尺寸不同时,具有较大基元尺寸的模式给人感觉更粗糙。粗糙度的计算可以分为以下几个步骤进行:
.

  1. 计算图像中大小为 2 k × 2 k 2^k×2^k 2k×2k个像素的活动窗口中像素的平均强度值,公式:
    A k ( x , y ) = ∑ i = x − 2 k − 1 x + 2 k − 1 − 1 ∑ j = y − 2 k − 1 y + 2 k − 1 − 1 g ( i , j ) / 2 2 k A_{k}(x,y)=\sum_{i=x-2^{k-1}}^{x+2^{k-1}-1}\sum_{j=y-2^{k-1}}^{y+2^{k-1}-1}g(i,j)/2^{2k} Ak(x,y)=i=x2k1x+2k11j=y2k1y+2k11g(i

这篇关于【算法知识总结】Tamura纹理特征的前世今生的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025679

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第