详解矩阵乘法中的Strassen算法

2024-06-02 16:38

本文主要是介绍详解矩阵乘法中的Strassen算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

机器学习中需要训练大量数据,涉及大量复杂运算,例如卷积、矩阵等。这些复杂运算不仅多,而且每次计算的数据量很大,如果能针对这些运算进行优化,可以大幅提高性能。

一、矩阵乘法

如下图所示:

Figure 1 Matrix Multiplication

二、Strassen算法

Figure 2 x^3 vs. x^2.807

三、Strassen原理详解

Strassen算法正是从这个角度出发,实现了降低算法复杂度!

实现步骤可以分为以下4步:

3.1 Strassen实现步骤

 

四、Strassen算法的代码实现

我们以MNN中关于Strassen算法源码实现来学习:https://github.com/alibaba/MNN/blob/master/source/backend/cpu/compute/StrassenMatmulComputor.cpp。

类StrassenMatrixComputor提供了3个API供调用:

_generateTrivalMatMul(const Tensor* AT, const Tensor* BT, const Tensor* CT);

普通矩阵乘法计算

_generateMatMul(const Tensor* AT, const Tensor* BT, const Tensor* CT, int currentDepth);

Strassen算法的矩阵乘法

_generateMatMulConstB(const Tensor* AT, const Tensor* BT, const Tensor* CT, int currentDepth);

Strassen算法的矩阵乘法(和MatMul的区别在于内存Buffer是否允许复用)

我们以_generateMatMul为例来学习下Strassen算法如何实现,可以分成如下几步:

第一步:使用Strassen算法收益判断

在矩阵操作中,因为需要对矩阵的维数进行扩展,涉及大量读写操作,这些读写操作都需要大量循环,如果读写次数超出使用Strassen乘法的收益的话,就得不偿失了,那么就使用普通的矩阵乘法

    /*Compute the memory read / write cost for expandMatrix Mul need eSub*lSub*hSub*(1+1.0/CONVOLUTION_TILED_NUMBWR), Matrix Add/Sub need x*y*UNIT*3 (2 read 1 write)*/float saveCost =(eSub * lSub * hSub) * (1.0f + 1.0f / CONVOLUTION_TILED_NUMBWR) - 4 * (eSub * lSub) * 3 - 7 * (eSub * hSub * 3);if (currentDepth >= mMaxDepth || e <= CONVOLUTION_TILED_NUMBWR || l % 2 != 0 || h % 2 != 0 || saveCost < 0.0f) {return _generateTrivialMatMul(AT, BT, CT);}

第二步:分块

    auto aStride = AT->stride(0);auto a11     = AT->host<float>() + 0 * aUnit * eSub + 0 * aStride * lSub;auto a12     = AT->host<float>() + 0 * aUnit * eSub + 1 * aStride * lSub;auto a21     = AT->host<float>() + 1 * aUnit * eSub + 0 * aStride * lSub;auto a22     = AT->host<float>() + 1 * aUnit * eSub + 1 * aStride * lSub;auto bStride = BT->stride(0);auto b11     = BT->host<float>() + 0 * bUnit * lSub + 0 * bStride * hSub;auto b12     = BT->host<float>() + 0 * bUnit * lSub + 1 * bStride * hSub;auto b21     = BT->host<float>() + 1 * bUnit * lSub + 0 * bStride * hSub;auto b22     = BT->host<float>() + 1 * bUnit * lSub + 1 * bStride * hSub;auto cStride = CT->stride(0);auto c11     = CT->host<float>() + 0 * aUnit * eSub + 0 * cStride * hSub;auto c12     = CT->host<float>() + 0 * aUnit * eSub + 1 * cStride * hSub;auto c21     = CT->host<float>() + 1 * aUnit * eSub + 0 * cStride * hSub;auto c22     = CT->host<float>() + 1 * aUnit * eSub + 1 * cStride * hSub;

第三步:分治和递归

Strassen算法核心就是分治思想。这一步可以写成下列所示伪代码:

1. If n = 1 Output A × B
2. Else
3. Compute A11,B11, . . . ,A22,B22 % by computing m = n/2
4. P1   Strassen(A11,B12 − B22)
5. P2   Strassen(A11 + A12,B22)
6. P3   Strassen(A21 + A22,B11)
7. P4   Strassen(A22,B21 − B11)
8. P5   Strassen(A11 + A22,B11 + B22)
9. P6   Strassen(A12 − A22,B21 + B22)
10. P7   Strassen(A11 − A21,B11 + B12)
11. C11   P5 + P4 − P2 + P6
12. C12   P1 + P2
13. C21   P3 + P4
14. C22   P1 + P5 − P3 − P7
15. Output C
16. End If

例如其中的一步代码如下所示:

   {// S1=A21+A22, T1=B12-B11, P5=S1T1auto f = [a22, a21, b11, b12, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride]() {MNNMatrixAdd(xAddr, a21, a22, eSub * aUnit / 4, eSub * aUnit, aStride, aStride, lSub);MNNMatrixSub(yAddr, b12, b11, lSub * bUnit / 4, lSub * bUnit, bStride, bStride, hSub);};mFunctions.emplace_back(f);auto code = _generateMatMul(X.get(), Y.get(), C22.get(), currentDepth);if (code != NO_ERROR) {return code;}}

递归执行,得到最终结果!

这篇关于详解矩阵乘法中的Strassen算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024517

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)