动规算法-地下城游戏

2024-06-02 16:28
文章标签 算法 游戏 动规 地下城

本文主要是介绍动规算法-地下城游戏,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

在刷题练习专栏中,已经写了两篇文章实现对动态规划入门题目的讲解了,动态规划这类题目很难很好的掌握,今天给大家带来稍微深入的题目,帮助大家更好的理解动态规划的算法思想,加深对该算法的理解,建议看每道题之前可以自己尝试做一做,然后再看一看我的思路,做题步骤会延续之前的方法。
第一题
地下城游戏
在这里插入图片描述
这道题一定要读懂题意,遇到像这样的题目,一定要注意细节,防止看错后边很难修改。
这道题下边的注意也要读懂,意思是,救到公主后我们的血量至少为1。
这道题乍一看是一道普通的路径选择问题,但是因为一个限制条件,让这道题在leetcode中标记为困难,首先来看示例,明白题目和分析状态表示。
在这里插入图片描述
在前边的题目中,我们有过两种分析思路,分别是以某位置为开始和以某位置为结尾两种分析方式,在前边的题目中这两种方式都是可以解决问题的,但是在这道题目中,有一种方式是不可以的,就是因为前边的限制条件。
为了更好讲解这道题目,可以先来看一看这道题
最小路径和
这道题虽然简单,但是对我们理解这道题目很有帮助。
在这里插入图片描述
用这道题作为例子深刻理解以某位置为开始和以某位置为结尾两种思路来做这道题。
第一种思路,先来一个容易理解一点的,那就是以某位置为开始。
对于这道题,状态表示为,从左上角开始,到达i,j位置产生的最小路径和。如果你对动态规划有了了解,相信你能很快解决这道问题。
代码如下(有详细注释)

int minPathSum(vector<vector<int>>& grid) {int m=grid.size(),n=grid[0].size();vector<vector<int>> dp(m+1,vector<int> (n+1,INT_MAX));//创建dp表dp[0][1]=dp[1][0]=0;//为了不影响后边的数据.for(int i=1;i<=m;i++)for(int j=1;j<=n;j++)dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];//这里与原数组的对应关系一定要控制好return dp[m][n];}

画图表示该过程的话就是下图。
在这里插入图片描述
接下来是第二种思路,那就是以某个位置为起点。
在这道题目中,状态表示即为从i,j位置开始,到达右下角位置的最小路径和。

//以某位置为起点int minPathSum(vector<vector<int>>& grid) {int m=grid.size(),n=grid[0].size();vector<vector<int>> dp(m+1,vector<int> (n+1,INT_MAX));dp[m-1][n]=0,dp[m][n-1]=0;for(int i=m-1;i>=0;i--){for(int j=n-1;j>=0;j--){dp[i][j]=min(dp[i+1][j],dp[i][j+1])+grid[i][j];}}       return dp[0][0];}

如下图
在这里插入图片描述
这道题一定要好好思考思考,要注意因为他们的状态表示不同,所以返回值也不同。

看完上面所述题目后,正式开始分析这道题。
实例1如下:
在这里插入图片描述
第一种分析思路,就是以某位置为结尾这种思路,状态表示dp[i][j]表示从起点出发,到达(i,j)位置所需最小初始健康量。有了上边拿到题目的铺垫。以这道题为例子,就是左下角向右上角填。

按上边的状态表示来做的话,状态表示为从初始位置出发,到达i,j位置时所需要的最小血量。如果我们想要从第一个位置杀出去,我们至少需要3滴血,但是我们怎么能保证我们判断的3是正确的呢?怎么保证我们找出的数正好是解救公主最少的血量呢?我们不能保证。因为用这种思路在判断某个位置的结果时,不仅会受到前边的状态的影响,还会受到后边表格中的值的影响。通过前边的表格中的值,只能找到能够到达下一位置需要的健康值,而是否能够解救公主,还需要通过后边路径中的值来判断的,所以我们填出的值不符合无后效性。

无后效性是指一个问题可以用动态规划求解的标志之一。具体地说,如果一个问题被划分各个阶段之后,阶段I中的状态只能由阶段I+1中的状态通过状态转移方程得来,与其它状态没有关系,特别是与未发生的状态没有关系。

所以这道题目只能用第二种思路,那就是以某位置为结尾这种思路来完成。

  • 状态表示
    从i,j位置出发,到达右下角位置所需要的最低生命值。这种分析思路是可行的。可以从后往前递推出最终结果。

  • 状态转移方程
    分析状态方程要注意题意,我们从最后一个位置出去才能成功救助公主,所以要想从该位置出去并且能成功到达下一位置,状态表示为dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];
    画图演示一下
    在这里插入图片描述
    还需要有一个注意的是,就像图中30的位置,因为该血包很大,所以得出dp值可能会变成负数,但是我们已经在到达dp[i][j]位置挂了,又怎么能吃到血包呢?所以得出的该位置的dp值要和1做一次max。

  • 初始化
    老套路,需要填表时不能影响最终结果,左下角位置特殊一点。画图
    在这里插入图片描述

  • 填表顺序
    有了那一道题,我想这里很容易得出是从右下角往左上角填

  • 返回值
    根据状态表示可以知道,返回的是dp[0][0]位置的值。

最终代码

int calculateMinimumHP(vector<vector<int>>& dungeon) {int a=dungeon.size();int b=dungeon[0].size();vector<vector<int>> dp(a+1,vector<int> (b+1,INT_MAX));dp[a][b-1]=dp[a-1][b]=1;for(int i=a-1;i>=0;i--){for(int j=b-1;j>=0;j--){dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];dp[i][j]=max(dp[i][j],1);}}return dp[0][0];}

在这里插入图片描述

这篇关于动规算法-地下城游戏的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024486

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

国产游戏崛起:技术革新与文化自信的双重推动

近年来,国产游戏行业发展迅猛,技术水平和作品质量均得到了显著提升。特别是以《黑神话:悟空》为代表的一系列优秀作品,成功打破了过去中国游戏市场以手游和网游为主的局限,向全球玩家展示了中国在单机游戏领域的实力与潜力。随着中国开发者在画面渲染、物理引擎、AI 技术和服务器架构等方面取得了显著进展,国产游戏正逐步赢得国际市场的认可。然而,面对全球游戏行业的激烈竞争,国产游戏技术依然面临诸多挑战,未来的