基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A)

本文主要是介绍基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。

通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。

鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:

图片

 


function CM = hclustering(pixel_vector, Xd)[ylen, xlen] = size(Xd);% feature vectors are divided into three categories by using FCMoptions = [2.0; 100; 1e-5; 0];fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})ttr = numel(index{1})/(ylen*xlen)*1.25;ttl = numel(index{1})/(ylen*xlen)/1.10;
elsettr = numel(index{2})/(ylen*xlen)*1.25;ttl = numel(index{2})/(ylen*xlen)/1.10;
endc_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);Xdk = reshape(Xd, ylen*xlen, 1);maxU = max(U);for i = 1:c_numindex{i} = find(U(i,:) == maxU);    
endfor i = 1:c_numidx_mean(i) = mean(Xdk(index{i}));
end[idx_mean, idx] = sort(idx_mean);for i = 1:c_numidx_num(i) = numel(index{idx(i)});
endCMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;for i = 1:c_num-1c = c+idx_num(c_num-i);if c / (ylen*xlen) < ttlCMk0(index{idx(c_num-i)}) = 0.0;elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttrCMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseif mid_lab == 0CMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseCMk0(index{idx(c_num-i)}) = 1;endend
end
基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB 2018)
原创2024-06-02 11:48·哥本哈根诠释2023
海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:function CM = hclustering(pixel_vector, Xd)[ylen, xlen] = size(Xd);% feature vectors are divided into three categories by using FCMoptions = [2.0; 100; 1e-5; 0];fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})ttr = numel(index{1})/(ylen*xlen)*1.25;ttl = numel(index{1})/(ylen*xlen)/1.10;
elsettr = numel(index{2})/(ylen*xlen)*1.25;ttl = numel(index{2})/(ylen*xlen)/1.10;
endc_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);Xdk = reshape(Xd, ylen*xlen, 1);maxU = max(U);for i = 1:c_numindex{i} = find(U(i,:) == maxU);    
endfor i = 1:c_numidx_mean(i) = mean(Xdk(index{i}));
end[idx_mean, idx] = sort(idx_mean);for i = 1:c_numidx_num(i) = numel(index{idx(i)});
endCMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;for i = 1:c_num-1c = c+idx_num(c_num-i);if c / (ylen*xlen) < ttlCMk0(index{idx(c_num-i)}) = 0.0;elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttrCMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseif mid_lab == 0CMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseCMk0(index{idx(c_num-i)}) = 1;endend
endCM = reshape(CMk0, ylen, xlen);
完整代码可通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1

结果如下:

图片

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024046

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行