基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A)

本文主要是介绍基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。

通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。

鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:

图片

 


function CM = hclustering(pixel_vector, Xd)[ylen, xlen] = size(Xd);% feature vectors are divided into three categories by using FCMoptions = [2.0; 100; 1e-5; 0];fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})ttr = numel(index{1})/(ylen*xlen)*1.25;ttl = numel(index{1})/(ylen*xlen)/1.10;
elsettr = numel(index{2})/(ylen*xlen)*1.25;ttl = numel(index{2})/(ylen*xlen)/1.10;
endc_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);Xdk = reshape(Xd, ylen*xlen, 1);maxU = max(U);for i = 1:c_numindex{i} = find(U(i,:) == maxU);    
endfor i = 1:c_numidx_mean(i) = mean(Xdk(index{i}));
end[idx_mean, idx] = sort(idx_mean);for i = 1:c_numidx_num(i) = numel(index{idx(i)});
endCMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;for i = 1:c_num-1c = c+idx_num(c_num-i);if c / (ylen*xlen) < ttlCMk0(index{idx(c_num-i)}) = 0.0;elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttrCMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseif mid_lab == 0CMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseCMk0(index{idx(c_num-i)}) = 1;endend
end
基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB 2018)
原创2024-06-02 11:48·哥本哈根诠释2023
海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:function CM = hclustering(pixel_vector, Xd)[ylen, xlen] = size(Xd);% feature vectors are divided into three categories by using FCMoptions = [2.0; 100; 1e-5; 0];fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})ttr = numel(index{1})/(ylen*xlen)*1.25;ttl = numel(index{1})/(ylen*xlen)/1.10;
elsettr = numel(index{2})/(ylen*xlen)*1.25;ttl = numel(index{2})/(ylen*xlen)/1.10;
endc_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);Xdk = reshape(Xd, ylen*xlen, 1);maxU = max(U);for i = 1:c_numindex{i} = find(U(i,:) == maxU);    
endfor i = 1:c_numidx_mean(i) = mean(Xdk(index{i}));
end[idx_mean, idx] = sort(idx_mean);for i = 1:c_numidx_num(i) = numel(index{idx(i)});
endCMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;for i = 1:c_num-1c = c+idx_num(c_num-i);if c / (ylen*xlen) < ttlCMk0(index{idx(c_num-i)}) = 0.0;elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttrCMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseif mid_lab == 0CMk0(index{idx(c_num-i)}) = 0.5;mid_lab = 1;elseCMk0(index{idx(c_num-i)}) = 1;endend
endCM = reshape(CMk0, ylen, xlen);
完整代码可通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1

结果如下:

图片

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024046

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤