Impala的分布式查询

2024-06-02 04:58
文章标签 查询 分布式 impala

本文主要是介绍Impala的分布式查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/u011239443/article/details/51655483

翻译自《Getting Started with Impala》

 

分布式查询

  

        分布式查询是impala的核心。曾几何时,你需要研究并行计算,才能开始进行深奥而晦涩的操作。现在,有运行在Hadoop上面的Impala,你只需要...一台笔记本电脑。理想情况下,一个IT部门也会有运行着Cloudera Distribution with Hadoop (CDH)的Linux服务器集群。但在紧急情况下,有一个虚拟机的单独的笔记本电脑就能够进行开发和设计的工作。

  当一个Impala查询在一个Hadoop集群上运行时,Impala将工作分解成多个阶段,并且自动的将适当的请求发送给集群中对应的节点。这种自动分工就是为什么Impala能这么好适用于大数据应用案例的原因。当一个工作被4个,10个,100个或者更多的机器划分的时候,这些查询根据单机的容量而应变,形成一个单元来运行。分解工作和制定它在这么多的机器之间通信会产生一些开销。因此,有两个重点:1.为高效的查询处理组织好你的方案 2.帮助Impala估计特定的查询会涉及多少工作。

  每个分布式查询执行步骤如下(极大的简化了):

  1.Node #1,core #1:从你的本地磁盘的相关数据块中读取大数据文件的一部分。

  2.Node #1,core #2:读取相同文件的不同部分。每个请求像这样运行,使得一个节点有着该请求对应的数据块备份。多核意味着每个服务器有并行处理4,8,16甚至更多的数据块的潜力。

  3.Node #2 ,core #1:读取整个小的数据文件。该文件要足够小,以至于能适应单个HDFS块,这样一来你就能处理所有事情了。

  4.重复以上集群中所有数据节点和节点中的核的工作,增加每个节点的可用磁盘数量。保持运行,直到所有的相关HDFS数据块被处理完。

  5.假设:处理一个查询,只需要列X,Y和Z,并且产生一个结果集。那么,每个节点:忽略来自所有其它列的数据。(使用Parquet格式的表的话,这些被忽略的数据将不会被读取)这种操作就是所谓的投影(projection)

  6.每个节点:当你读取数据文件时,忽略所有不符合WHERE条款的行。这就是一个过滤(filtering)操作;在WHERE条款中的条件被称作为断言(predicates)

  7.每个节点:现在可以得到所保存的更加易于管理的数据量,在它上面进行求和,排序,分组,函数调用,或者其它操作。

  8.对表中的所有相关的数据文件运行这些步骤,直到所有需要的数据读取完毕,并且每个节点的每个核得出自己部分所对应的结果集。

  9.如果查询语句有LIMIT条款,那么结果集会更加被压缩。每个节点:假设你是一个寻找到“top N”结果的节点,并且只返回前N行的结果集。

  10.现在如果有一个JOIN或者UNION条框,每个节点传送必要的中间结果给其它节点来进行交叉检查,消除重复等等。对所有的JOIN和UNION条款重复以上步骤。

  11.当查询的所有阶段的中间结果都已经准备好了,就尽量把结果返回给任何首先初始化查询的节点。这个协调节点(coordinator node)进行必要的最终排序,分组和聚合。比如,只有当所有的中间结果可以相互比较的时候,才能最终裁定“top 10 visitors”。

  

  所有的并行处理对结果的特性具有以下的影响:

  • 任何写操作可能产生多个输出文件,每个节点以单独的文件作为返回的运行结果。
  • 哪个数据在哪个节点上处理事先并不确定。因此,在连续查询的时候,会存在一定程度的性能变化。
  • 通过后续查询而形成的特定排序,返回至磁盘上的结果是不可靠的。工作可能被分解到不同的节点上,或者节点会根据完成自己那部分的工作的速度,以不同的顺序返回中间结果。
  • 跨群集分配工作之前,每个查询的规划阶段会尽可能的计算出未知数。Impala会尽可能的把表达式转化为常量,而不是在每个节点上重新计算它们。当你调用时间相关的函数时,比如说 NOW(), 在查询开始的时候,那时候的时间会被捕获,并且所有节点上使用相同的值,而不会重新计算每个节点开始工作的精确时间。
  • 传送最终结果给协调节点所花的时间和结果集的大小成正比。因此,Impala的查询一般会避免大表的select * 操作,并且一般会包含多个WHERE条款,一个LIMIT条款或者聚合函数,来把结果压缩成相对小的体积,并且减少网络开销。


这篇关于Impala的分布式查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023087

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

浅谈mysql的sql_mode可能会限制你的查询

《浅谈mysql的sql_mode可能会限制你的查询》本文主要介绍了浅谈mysql的sql_mode可能会限制你的查询,这个问题主要说明的是,我们写的sql查询语句违背了聚合函数groupby的规则... 目录场景:问题描述原因分析:解决方案:第一种:修改后,只有当前生效,若是mysql服务重启,就会失效;

MySQL多列IN查询的实现

《MySQL多列IN查询的实现》多列IN查询是一种强大的筛选工具,它允许通过多字段组合快速过滤数据,本文主要介绍了MySQL多列IN查询的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析与优化1.

redis+lua实现分布式限流的示例

《redis+lua实现分布式限流的示例》本文主要介绍了redis+lua实现分布式限流的示例,可以实现复杂的限流逻辑,如滑动窗口限流,并且避免了多步操作导致的并发问题,具有一定的参考价值,感兴趣的可... 目录为什么使用Redis+Lua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

Seata之分布式事务问题及解决方案

《Seata之分布式事务问题及解决方案》:本文主要介绍Seata之分布式事务问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Seata–分布式事务解决方案简介同类产品对比环境搭建1.微服务2.SQL3.seata-server4.微服务配置事务模式1

mysql关联查询速度慢的问题及解决

《mysql关联查询速度慢的问题及解决》:本文主要介绍mysql关联查询速度慢的问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql关联查询速度慢1. 记录原因1.1 在一次线上的服务中1.2 最终发现2. 解决方案3. 具体操作总结mysql

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I