使用迭代最近点 (ICP) 算法在 Open3D 中对齐点云

2024-06-02 03:20

本文主要是介绍使用迭代最近点 (ICP) 算法在 Open3D 中对齐点云,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Open3D 简介及其功能

   Open3D 是一个现代库,它提供了用于处理 3D 数据的各种工具。在其功能中,它提供了高效的数据结构和算法来处理点云、网格等,使其成为在计算机视觉、机器人和图形领域工作的研究人员和从业人员的不错选择。Open3D 的特点之一是它实现了迭代最近点 (ICP) 算法,该算法用于模型对齐任务。

二、Open3D 和 ICP 入门

   迭代最近点 (ICP) 算法是用于对齐 3D 模型的基本技术。它的工作原理是迭代最小化两个点云或一个点云与 3D 模型之间的距离。该算法假设两个点云在不同的方向和/或位置表示相同的对象或场景。ICP 对于机器人和增强现实中的对象识别、定位和映射等任务特别有用。

   要在 Open3D 中使用 ICP,您首先需要安装库。您可以使用 pip 执行此操作:

pip install open3d

   Open3D 在其示例数据集中包含许多模型。安装后,我们可以导入 Open3D 并加载 Stanford Bunny 模型,这是一个用于测试 3D 算法的标准数据集:

import open3d as o3d 
# Load the Bunny mesh
bunny = o3d.data.BunnyMesh()
mesh = o3d.io.read_triangle_mesh(bunny.path)

   接下来,为了使 ICP 算法正常工作,有必要像这样计算顶点法线:

mesh.compute_vertex_normals()

   接下来,放下样本,这样我们就没有那么多点可以拟合了:

# Sample points from the mesh
pcd = mesh.sample_points_poisson_disk(number_of_points=1000)

   要在 Plotly 中将点云可视化为 3D 散点图,可以将 Open3D 点云转换为 NumPy 数组以进行 3D 绘图:

import plotly.graph_objects as go
import numpy as np# Convert Open3D point cloud to NumPy array
xyz = np.asarray(pcd.points)# Create a 3D scatter plot
scatter = go.Scatter3d(x=xyz[:, 0], y=xyz[:, 1], z=xyz[:, 2], mode='markers', marker=dict(size=1))
fig = go.Figure(data=[scatter])
fig.show()

斯坦福兔子点云
在这里插入图片描述

三、旋转模型并查找旋转矩阵

   为了演示 ICP,让我们创建一个 Bunny 模型的旋转版本,方法是将原始模型旋转 45 度,然后使用 ICP 找到原始模型和旋转模型之间的旋转矩阵:

# Apply an arbitrary rotation to the original point cloud
R = o3d.geometry.get_rotation_matrix_from_xyz((np.pi / 4, np.pi / 4, np.pi / 4))
rotated_pcd = pcd.rotate(R, center=(0, 0, 0))

查看旋转的兔子,确保一切正常:

# Convert Open3D point cloud to NumPy array
xyz_rot = np.asarray(rotated_pcd.points)# Create a 3D scatter plot
scatter = go.Scatter3d(x=xyz_rot[:, 0], y=xyz_rot[:, 1], z=xyz[:, 2], mode='markers', marker=dict(size=1.0))
fig = go.Figure(data=[scatter])
fig.show()

在这里插入图片描述
斯坦福兔子旋转 45 度

   现在,我们使用 ICP 来查找原始模型和旋转模型之间的转换矩阵。

# Use ICP to find the rotation
threshold = 0.02  # Distance threshold
trans_init = np.identity(4)  # Initial guess (identity matrix)
trans_init[:3, :3] = R  # We set the initial rotation to the known rotation
reg_p2p = o3d.pipelines.registration.registration_icp(source=rotated_pcd, target=pcd, max_correspondence_distance=threshold,init=trans_init
)# Extract the rotation matrix from the transformation matrix
estimated_rotation_matrix = reg_p2p.transformation[:3, :3]
rotation_matrix = reg_p2p.transformation[:3, :3]
print("Estimated rotation matrix:")
print(rotation_matrix)

   ​ICP发现的原始模型和旋转模型之间的旋转矩阵
在这里插入图片描述

四、验证旋转

   为了验证旋转,我们可以将估计旋转矩阵的逆函数应用于旋转模型,并将其与原始模型进行比较。通过取点之间的均方误差 (MSE),我们可以检查旋转的模型是否在指定的公差范围内恢复到其原始对齐方式:

# Extract the rotation matrix from the transformation matrix
estimated_rotation_matrix = reg_p2p.transformation[:3, :3]# Apply the inverse of the estimated rotation to the rotated point cloud
inverse_rotation_matrix = np.linalg.inv(estimated_rotation_matrix)
rotated_back_pcd = rotated_pcd.rotate(inverse_rotation_matrix, center=(0, 0, 0))# Compare the original point cloud to the one rotated back to its original state
# We can use the mean squared error (MSE) between corresponding points as a metric
original_points = np.asarray(pcd.points)
rotated_back_points = np.asarray(rotated_back_pcd.points)
mse = np.mean(np.linalg.norm(original_points - rotated_back_points, axis=1) ** 2)# Check if the MSE is below a certain tolerance
tolerance = 1e-6
if mse < tolerance:print(f"Test passed: MSE = {mse}")
else:print(f"Test failed: MSE = {mse}")

   假设一切顺利,您应该会看到测试通过的结果,表明点云已重新对齐。

在这里插入图片描述
   显示 ICP 算法的演示到此结束:

   1 在两个未对齐的模型之间查找旋转,以及
   2 使用这些结果将旋转的模型重新对齐回原始方向。

五、使用 ICP 的局限性

   虽然 ICP 是用于模型对齐的强大工具,但它也有其局限性:

  •    ICP 需要良好的初始猜测才能收敛到正确的解决方案,尤其是对于具有大旋转或平移的点云。
  •    该算法可能在对称或无特征的表面上遇到困难,在这些表面上建立正确的对应关系具有挑战性。
  •    异常值和噪声会显著影响 ICP 的性能,从而导致不正确的对齐方式。
  •    ICP 不处理点云之间的尺度差异,因为它假定点云已经处于相同的尺度。
       尽管存在这些局限性,但 ICP 仍然是 3D 数据处理中广泛使用的算法,Open3D 提供了一个用户友好的界面,可将 ICP 应用于各种对齐问题。通过仔细的预处理和参数调整,ICP 可以成为对齐 3D 模型的可靠解决方案。

这篇关于使用迭代最近点 (ICP) 算法在 Open3D 中对齐点云的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022888

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2