Text2SQL之不装了,我也是RAG

2024-06-02 01:28
文章标签 rag text2sql 之不装

本文主要是介绍Text2SQL之不装了,我也是RAG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 背景
  • 核心策略
  • 关键步骤
  • 效果
    • 使用SQL fewshot
    • 使用上下文相关fewshot
  • 一些优化


背景

对业务数据库中的表实现问答。输入是用户的问题,输出是该问题的答案。

这是很典型的Text2SQL的应用场景了,为了实现这一需求,很容想到的是把创建的表和表的描述都放进prompt里,让LLM去根据表的结构生成SQL语句,再利用工具去执行SQL语句,拿到查询结果后,再丢给LLM,让LLM根据给定的内容回答问题。我一开始也是这么想的,但是,当你的业务表非常多的时候,比如有上千个,你应该选择哪个表或者哪些表去给到LLM呢?根据问题去检索可能会用到的表是比较容易想到的一种方式。

于是,我带着我的疑惑,去调研了目前一些比较火的text2sql的框架。惊奇地发现,他们确实也是这样做的。比较典型的就是vanna了

这篇关于Text2SQL之不装了,我也是RAG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022653

相关文章

我的第2个AI项目-RAG with Gemma hosted on HuggingFace and Weaviate in DSPy

目录 项目简介概述时间kaggle地址主要工作和收获技术栈数据集模型表现 未来项目说明思路和原则为什么不把现在的项目做深一点?博客风格转变 bug修复版本兼容问题 项目简介 概述 本项目简要介绍了如何使用 DSPy 构建一个简单的 RAG 管道,且利用了托管在 Hugging Face 上的 Gemma LLM模型 和 Weaviate 向量数据库。 时间 2024.09

jmeter压力测试,通过LLM利用RAG实现知识库问答,NEO4J部署,GraphRAG以知识图谱在查询时增强提示实现更准确的知识库问答(9/7)

前言         这周也是杂七杂八的一天(高情商:我是一块砖,哪里需要往哪里搬),首先是接触了jemter这个压力测试工具,然后帮公司的AIGC项目编写使用手册和问答手册的第一版,并通过这个平台的智能体实现知识库问答的功能展示,以及部分个人扩展和思考(NEO4J创建知识图谱的GraphRAG)。 Jmeter         Jmeter是一个压力测试工具,一开始导师叫我熟悉的时候我还说

深入RAG优化:BGE词嵌入全解析与Landmark Embedding新突破

前面已经写过一篇关于Embedding选型的文章,《如何高效选择RAG的中文Embedding模型?揭秘最佳实践与关键标准!》,主要介绍通过开源网站的下载量和测评效果选择Embedding模型。 一、Embedding选型建议与结果 选型建议: 1、大部分模型的序列长度是 512 tokens。8192 可尝试 tao-8k,1024 可尝试 stella。 2、在专业数据领域上,嵌入

langchain 《斗破苍穹》智谱 RAG 问题搜索

目录 代码 项目介绍 模型对比实验 分块方法对比 检索方法对比 结果 10条问题 15条问题 局限性 代码 https://github.com/5zjk5/prompt-engineering/tree/master 项目介绍 《斗破苍穹》小说 RAG 问答,爬虫爬取整部小说章节,并分别保存到不同的数据源中。 txt,pdf,markdown,word。

提升LLM结果:何时使用知识图谱RAG

通过知识图谱增强 RAG 可以帮助检索,使系统能够更深入地挖掘数据集以提供详细的响应。 有时,检索增强生成 (RAG) 系统无法深入文档集以找到所需的答案。我们可能会得到泛泛的或肤浅的回复,或者我们可能会得到回复,其中 RAG 系统检索到的细节很少,然后用不相关或不正确的信息填补空白——这被称为“幻觉”。 深度知识库和文档集可能包含我们用 RAG 提示回答问题所需的所有信息,但 RAG 系统

使用Cloudflare构建RAG应用;端到端语音开源大模型;AI幻灯片生成器,等六个开源项目

✨ 1: Cloudflare RAG 如何使用Cloudflare构建一个完整的RAG应用,结合多种搜索技术和AI服务。 Cloudflare RAG(Retrieval Augmented Generation)是一个全栈示例,展示如何使用 Cloudflare 构建 RAG 应用程序。该项目结合了 Cloudflare Workers、Pages、D1、KV、R2、AI Gate

风趣图解LLMs RAG的15种设计模式-第二课

全部用的是Midjourney连续性一致性绘图画成

LlamaIndex结合DSPy,进一步优化RAG系统

大家好,本文将介绍如何运用LlamaIndex和DSPy这两个工具来构建和优化检索增强型生成(Retrieval-Augmented Generation, RAG)系统。通过这两个框架的无缝结合,不仅能够简化开发过程,还能显著提高RAG系统的整体性能。接下来,将详细解析LlamaIndex与DSPy如何高效协同,带来1+1>2的效果。 1.LlamaIndex LlamaIndex 是用于构

增强RAG:选择最佳的嵌入和重排模型

对于如何选择最佳的嵌入模型和重排模型,给出了详细的步骤和代码。 在构建检索增强生成(RAG)管道时,关键组件之一是检索器。我们有多种嵌入模型可供选择,包括 OpenAI、CohereAI 和开源的sentence transformers。此外,还有来自 CohereAI 和sentence transformers的几种重排器可供选择。 但是,在所有这些选项中,我们如何确定最佳组合以获得顶级

Tool-SQL:基于Agent智能体的Text2SQL解决方案,显著提升Text2SQL效果

Tool-SQL:基于Agent智能体的Text2SQL解决方案,显著提升Text2SQL效果 近期,Text-to-SQL 技术通过整合数据库系统的反馈,有效利用了大型语言模型(LLMs)。尽管这些技术能有效纠正 SQL 查询的执行错误,但在处理数据库不匹配问题上仍显不足,这类问题不会引发执行异常。为此,我们设计了一个辅助工具框架,包括检索器和检测器,专门用于诊断并修正 SQL 查询中的不匹