langchain 《斗破苍穹》智谱 RAG 问题搜索

2024-09-05 20:36

本文主要是介绍langchain 《斗破苍穹》智谱 RAG 问题搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

代码

项目介绍

模型对比实验

分块方法对比

检索方法对比

结果

10条问题

15条问题

局限性


代码

https://github.com/5zjk5/prompt-engineering/tree/master

项目介绍

《斗破苍穹》小说 RAG 问答,爬虫爬取整部小说章节,并分别保存到不同的数据源中。 txt,pdf,markdown,word。

对数据进行分块,召回,根据问题生成回答。

对比了智谱 GLM 系列所有模型,以及不同召回块数(字数)的效果。

模型对比实验

spider.py 为爬虫代码

先用前 100 章节测试,再测试全部章节。 设置 10 个问题,控制变量法 测试结果如下: 

对比结果写在了 J 列,总结:

  1. glm_4_flash,glm-4-long 两个模型在效果上比较好,时间可以接受,准确率相对较好。
  2. glm-4-long 选择了这个模型去继续用。在 15w 字这个模型理解还是比较好的。

分块方法对比

  1. 字数分块,512, 1000,在 7-15w 字效果差不多
  2. 字数分块对比字数分块带上元数据的,效果也差不多,可能相差 1 个左右的准确率
  3. 并且别人有验证的带上元数据有好处的,所有后面都带上了

检索方法对比

 

  1. 较好的方法是相似性检索,及 mmr 但这两个对比在这里是一样,所以就用了相似性 similary
  2. 其他是 langchain 中的其他方法
  3. 上面的结论说了再 15w 左右是可以得到答案,且速度还可以,理解也不错,但 15w 还是太多了 ,所以先检索 150 个快,15w 字,在从 15w 在检索 50w ,这样更准确,却耗费 token 更少。

结果

上面的实验都是在选择,所以最终选择组合为:

  1. 字数分块+元数据,分块字数 1000
  2. glm-4-long 模型
  3. 检索相似性 similary,再混合检索(bm25+相似)得到 50w 字左右上下文参考

10条问题

data/test_doc_question.json 在 10 条问题上,使用前 100 章的问题,表现为 80-90%。

在 10 条问题三,使用全部章节,表现为 70-80%。因为内容多了,检索的东西会不一样且受问题影响。

例如:萧炎遇见的神秘老者是谁?

在前 100 章明显是药老,但全文不一定了,神秘老者可能多次出现,如岩浆下的老者等。问得范围太大了。

15条问题

data/doc_question.json 80-86.6% 浮动

局限性

这个属于常见的 RAG 方法,字数分块,然后检索相关内容,然后生成答案。 但通过这个检索检索会有一下局限性:

  1. 具有关联关系的问题是回答不出来的,如问题“萧炎在风雷大会上遇见的迦南学院的熟人是谁?”

检索回来可能是迦南学院有关的人,但不全,不能结合风雷大会去回答。

  1. 例如“萧炎老婆是谁?”这小说并没有明确写出‘萧炎的老婆是xxx’这种话,但读者们都知道他老婆的谁

  2. 上下文理解少,比如“萧炎晋级斗尊前跟谁打架了?”能找到晋级的那一章,但是跟谁打架了,这是需要前面的剧情的理解的,这并不会检索回来,所以跟问题有关的 上下文不太适合这种 RAG。适合检索某个片段然后回答这个片段的问题。

  3. 生成的回答,及检索的内容受问题影响,如上面说的“神秘老者”的问题,问题月具体效果越好。

这篇关于langchain 《斗破苍穹》智谱 RAG 问题搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140003

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2