本文主要是介绍UVA 11178 - Morley's Theorem(计算几何),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
这是一道基础的计算几何,基本自己推推就能推出来了,基本思路就是根据3点,求出角度,就可以知道要旋转的角度,然后求出两个旋转后的向量求交点输出即可
代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;struct Point {double x, y;Point() {}Point(double x, double y) {this->x = x;this->y = y;}void read() {scanf("%lf%lf", &x, &y);}
};typedef Point Vector;Vector operator + (Vector A, Vector B) {return Vector(A.x + B.x, A.y + B.y);
}Vector operator - (Vector A, Vector B) {return Vector(A.x - B.x, A.y - B.y);
}Vector operator * (Vector A, double p) {return Vector(A.x * p, A.y * p);
}Vector operator / (Vector A, double p) {return Vector(A.x / p, A.y / p);
}bool operator < (const Point& a, const Point& b) {return a.x < b.x || (a.x == b.x && a.y < b.y);
}const double eps = 1e-8;int dcmp(double x) {if (fabs(x) < eps) return 0;else return x < 0 ? -1 : 1;
}bool operator == (const Point& a, const Point& b) {return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}double Dot(Vector A, Vector B) {return A.x * B.x + A.y * B.y;} //点积
double Length(Vector A) {return sqrt(Dot(A, A));} //向量的模
double Angle(Vector A, Vector B) {return acos(Dot(A, B) / Length(A) / Length(B));} //向量夹角
double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;} //叉积
double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} //有向面积//向量旋转
Vector Rotate(Vector A, double rad) {return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
}//计算两直线交点,平行,重合要先判断
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {Vector u = P - Q;double t = Cross(w, u) / Cross(v, w);return P + v * t;
}//点到直线距离
double DistanceToLine(Point P, Point A, Point B) {Vector v1 = B - A, v2 = P - A;return fabs(Cross(v1, v2)) / Length(v1);
}Point get(Point A, Point B, Point C) {Vector v1 = C - B;double a1 = Angle(A - B, v1);v1 = Rotate(v1, a1 / 3);Vector v2 = B - C;double a2 = Angle(A - C, v2);v2 = Rotate(v2, -a2 / 3);return GetLineIntersection(B, v1, C, v2);
}int main() {int T;scanf("%d", &T);while (T--) {Point A, B, C, D, E, F;A.read();B.read();C.read();D = get(A, B, C);E = get(B, C, A);F = get(C, A, B);printf("%.6f %.6f %.6f %.6f %.6f %.6f\n", D.x, D.y, E.x, E.y, F.x, F.y);}return 0;
}
这篇关于UVA 11178 - Morley's Theorem(计算几何)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!