机器学习的基础算法--牛顿法

2024-06-01 16:48

本文主要是介绍机器学习的基础算法--牛顿法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数(x)的泰勒级数的前面几项来寻找方程(x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

把非线性函数  在  处展开成泰勒级数,取其线性部分,作为非线性方程的近似方程, 则有 

设  ,则其解为 

因为这是利用泰勒公式的一阶展开,  ,这里并不是完全相等,而是近似相等,即去掉泰勒级数2级以上的项,这里求得的  并不能让  ,只能说  的值比  更接近  ,于是乎,迭代求解的想法就很自然了,再把f(x)在x1 处展开为泰勒级数,取其线性部分为  的近似方程,若  ,则得  如此继续下去,得到牛顿法的迭代公式:

  ,通过迭代,这个式子必然在  的时候收敛。上述过程可以用一张动图来体现:

那么牛顿法对比于梯度下降有什么优势了?不难发现牛顿法是二阶收敛,收敛速度明显要高于梯度下降法。举个很简单的例子,梯度下降是考虑下山的坡度最陡,而牛顿法则是不仅要考虑下坡陡,还要考虑下坡变化的速率更快。

牛顿法主要可以解决两个问题,第一个是求根问题,比如一个一元五次方程的根,我们用代数的方法是求不出解的(阿贝尔和伽罗瓦的工作证明了一般一元五次方程没有根式解),而我们可以用牛顿法通过计算机来逼近对应的根;另外一个问题就是最优化的问题,这也是机器学习中和梯度下降法使用频率相当的一种优化算法。这里有几个常用的矩阵,是针对多元函数的问题,即雅克比矩阵和海森矩阵。简单介绍一下二者,雅克比矩阵为函数对各自变量的一阶导数,海森矩阵为函数对自变量的二次微分。形式分别如下:

要想实现多元函数的优化问题,必须使用这两个矩阵进行计算。

牛顿法利用计算机实现的整体思路:

求解最优化问题,一般是求解极大值或者极小值的问题,即目标函数导数求零点的问题,f' = 0;

把f(x)用泰勒公式展开到二阶,即:

等号左边和f(x)近似相等,抵消。然后对求导,得到:

                                                                          

更进一步:

                                                                                

然后得到迭代式子:

推广到多元函数,应用雅克比矩阵和海森矩阵,则有:

1、先决条件

暂无先决条件。

2、算法参数的初始化

这里我们需要初始化一些变量,比如epsilon(阈值),迭代次数N,变量初始值x0,y0……

3、算法的过程:这一步很重要,这里是变量更新的重要步骤;

1、确定对应的目标函数,并对目标函数进行优化,求解最有解,f(x0,x1,......)

2、对目标函数分别求解一阶偏导数和二阶偏导数,分别构建雅克比矩阵和海森矩阵,并用海森矩阵的逆左乘,雅克比矩阵右乘变量,即得到变化度量值。

3、确定迭代次数和变化度量值小于阈值epsilon,此时算法终止,而变量也会停止更新,形成最优参数,否则,进入步骤4.

以下是用python实现二元函数求解最优化值的code;

import numpy as np
def newton_method(x0,y0,N,E):X1,X2,Y,Y_d=[],[],[],[]#X1,X2为二元函数的两个特征,Y为标签,Y_d为n=1#迭代次数记录X1.append(x0)X2.append(y0)Y.append(f(x0,y0))#算法过程第一步,确定目标函数f(x0,y0),对它进行参数优化ee=g(x0,y0)#初始化阈值e=(ee[0,0]**2+ee[1,0]**2)**0.5#二元函数求解的一阶导数为一个2*1维的雅克比矩阵,一种刻画变化的函数#算法迭代过程while n<N and e>E:n+=1#迭代两个变量X=-np.dot(np.linalg.inv(G(x0,y0)),g(x0,y0))x0+=X[0,0]y0+=X[1,0]ee=g(x0,y0)e=(ee[0,0]**2+ee[1,0]**2)**0.5#更新阈值print(n)print (x0,y0,N,E)
f=lambda x,y:3*x**2+3*y**2-x**2*y#声明目标函数
g=lambda x,y:np.array([[6*x-2*x*y],[6*y-x**2]])#构建目标函数的雅克比矩阵
G=lambda x,y:np.array([[6-2*y,-2*x],[-2*x,6]])#构建目标函数的海森矩阵
x0,y0,N,E=-2,4,10,10**(-6)
newton_method(x0,y0,N,E)

out:

2
3
4
5
6
-4.242640687119334 3.0000000000000355 10 1e-06

在这里我还没有弄懂变化度量的取值,这也是仿照网络上某位大神的code写的,主要为了校核一下算法是否正确,好吧,这是目前我碰到最难的算法,不借助numpy包,我都不知道该怎么求海森矩阵的逆。

这篇关于机器学习的基础算法--牛顿法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021562

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4