你喜欢什么样的狗?喜欢内狗还是外狗?论看门狗的重要性:极低功耗微处理器复位电路CN803/CN809/CN810

本文主要是介绍你喜欢什么样的狗?喜欢内狗还是外狗?论看门狗的重要性:极低功耗微处理器复位电路CN803/CN809/CN810,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看门狗:缩写WTD,英文WATCH DOG.

你的程序会死机吗?

陷入死循环或程序指针不知跑哪里去了,看门狗的作用是把程序拉回来,重新开始跑。
有了看门狗,程序就不会死机,所以很重要。
比如一个温度控制器,设置好要控制的温度,即使程序跑飞了,只要能拉回来,就没问题。
但是,某些场合,看门狗是最好不要动作的,比如CNC数控机床,在加工零件时,程序跑飞可能就是工件报废。

内狗还是外狗?

现在很多单片机或ARM嵌入式处理器都内置了看门狗,启动后,只要喂狗就可以,这种属于内狗,据说,内狗是程序控制的,还不够可靠。
因此,还有外狗,在处理器外面使用硬件或专用看门狗芯片来呵护你的宝贵的程序。
今天就讲讲这个外狗,一个便宜的国产外狗,某创批量价格约0.11元。

注意事项:

看门狗应尽量靠近处理器,其中RESET复位信号线尽量短,如复位信号引脚需连接外部的调试或编程接口,应在看门狗输出引脚串个100-300欧姆的电阻隔离或使用开漏输出的看门狗。
极低功耗微处理器复位电路CN803、CN809、CN810

CN809L

根据集成电路的发展规律,这些型号也都是老外设计的,比如最好出现的是IMP803,IMP809,IMP810,现在国内的兼容型号也多是如此,以XXX803,809,810等出现。

极低功耗微处理器复位电路CN803、CN809、CN810

概述

CN803/809/810系列电路是用来监测电源电压或电池电压的微处理器复位电路。本系列电路不需要外围器件,从而提高了系统的可靠性,降低了系统的成本。
本系列电路在被监测的电源电压低于预先设置的复位阈值时,输出有效的复位信号;当电源电压上升到复位阈值以上时,在至少140毫秒的时间内复位信号还将维持有效。CN809/810提供CMOS复位输出,CN803提供漏极开路输出。
CN803和CN809的复位输出为低有效,CN810的复位输出为高有效。在设计上保证短时间的电源突降不会影响复位输出。在整个温度范围内,当电源电压低至1.15V时仍能保证可靠输出。
本系列器件采用3管脚的SOT23封装。

应用

计算机
微控制器
智能仪表
便携式或电池供电的设备

特点

精确的复位阈值:±2.5%
提供两种复位输出:
CMOS输出(CN809/CN810)
漏极开路输出(CN803)
最小140ms的复位脉冲宽度
低工作电流:3V时典型值3.2µA
复位信号在电源电压低至1.15V时仍能维持可靠输出
对短时间电源突降的过滤功能
工作温度范围:-40°C to +85°C

封装及引脚定义

采用SOT23-3封装
封装及引脚定义

CN803、CN809、CN810管脚排列图

1 GND
2 /RESET (RESET)
3 VCC
括号里的内容只针对CN810,输出高电平复位信号,/RESET种的斜杠代表输出低电平复位信号,和N类似,一般和处理器的NRST引脚连接。

器件功能一览表

器件功能一览表

器件功能一览表

器件型号/复位阈值/复位电平,高有效或低有效/输出类型/丝印
CN809L 4.63V 低 CMOS AAAA
CN810L 4.63V 高 CMOS AGAA
CN809M 4.38V 低 CMOS ABAA
CN810M 4.38V 高 CMOS AHAA
CN809J 4.00V 低 CMOS CWAA
CN809T 3.08V 低 CMOS ACAA
CN810T 3.08V 高 CMOS AJAA
CN809S 2.93V 低 CMOS ADAA
CN810S 2.93V 高 CMOS AKAA
CN809R 2.63V 低 CMOS AFAA
CN810R 2.63V 高 CMOS ALAA
CN803S 2.93V 低 漏极开路 ABC
CN803R 2.63V 低 漏极开路 ABD

功能框图

提醒一下厂家,MOSFET的符号画错了啊,电阻符号也不对。
CN803输出级没有PMOSFET
功能框图

图1 功能框图

管脚描述

管脚序号 符号 功能描述
1 GND 地
2
/RESET (CN809) CMOS 复位输出(CN809)。如果 VCC 的电压低于复位阈值,则此管脚为低电平,为复位有效状态;在 VCC电压上升到高于 VRES + VHYST 后,此管脚将维持至少140 毫秒的低电平,然后转为高电平。
RESET (CN810) CMOS 复位输出。如果 VCC 的电压低于复位阈值,则此管脚为高电平,为复位有效状态;在 VCC 电压上升到高于 VRES + VHYST 后,此管脚将维持至少 140 毫秒的高电平,然后转为低电平。

/RESET(CN803) 漏极开路复位输出(CN803)。如果 VCC 的电压低于复位阈值,则此管脚为低电平,为复位有效状态;在 VCC电压上升到高于 VRES + VHYST 后,此管脚将维持至少140 毫秒的低电平,然后转为高阻态。

3 VCC 电源正输入端。此管脚的电压既是内部电路的工作电源,也是被监测的电压。

极限参数
管脚电压(相对于地)
VCC……………-0.3V to +6.0V
/RESET, RESET ……-0.3V to +6.0V
管脚电流
VCC …20mA
/RESET, RESET ……….……20mA
热阻……………………………………300°C/W
工作环境温度……….……………-40 to +85°C
存储温度………………………-65 to +150°C
最高结温…………………………+150°C
焊接温度(10秒)………………+300°C
静电放电电压(HBM)……………………4KV
超出以上所列的极限参数可能造成器件的永久损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。

电气参数(除非另外注明,VCC=3V,TA= -40℃ 到 85℃, 典型值在 TA=25℃时测得)
电气参数

电气参数

CN8__L 4.51 4.63 4.75
CN8__M 4.25 4.38 4.5
CN8__J 3.89 4.00 4.11
CN8__T 3.0 3.08 3.15
CN8__S 2.86 2.93 3.0
CN8__R 2.56 2.63 2.7

详细描述

CN803/809/810系列电路主要用于监测微处理器、微控制器、存储器等数字电路的电源,并在上电,掉电或者电源电压低于复位阈值时提供复位信号,确保它们运行在可知的状态,避免错误代码的执行。该电路内部包含电压比较器,低功耗电压基准源,分压网络,输出延时电路和输出驱动电路。

CN803/809/810系列电路在电源电压低于复位阈值时将输出有效的复位信号,在电源电压上升到高于复位阈值与复位阈值迟滞之和以后,复位输出将至少维持140毫秒的有效状态。CN809/810提供CMOS输出,CN803提供漏极开路输出。CN803/809提供低有效的复位输出,而CN810提供高有效的复位输出。在设计上保证短时间的电源突降不会影响复位输出。在整个工作温度范围内,当电源电压低至1.15V时仍能保证可靠输出。
图 2 清楚地说明了本系列电路的工作原理:
在这里插入图片描述

图 2 时序图

应用信息

VCC电压短时间突降

除了在电源上电,掉电或者电源电压低于复位阈值时提供有效的复位信号外,CN803/809/810系列电路对电源电压的短时间突降有过滤功能,即电源电压在很短时间内低于复位阈值不会产生复位信号。
随着电源电压突降的幅度增加(变得比复位阈值更低),不产生有效复位信号的脉冲宽度将减小。
通常情况下,当电源电压比复位阈值低100毫伏的时间小于10微秒时,将不会产生有效的复位输出。
在靠近VCC管脚的地方加一个0.1uF的旁路电容将增强对电源电压短时间突降的过滤能力。

在 VCC=0V 时,保证有效的复位信号输出

在VCC降到1.15V以下时,CN809的低有效复位输出信号不再下拉电流,复位输出信号处于不确定状态。在大多数应用中,这不会引起任何问题,因为单片机等电路在电源电压低至1.15V时已经不能工作。为了使复位输出信号在VCC小于1.15V时有一个确定的状态,可以在复位输出端和地之间接一个下拉电阻,如图3所示。此下拉电阻的值在100千欧姆左右,通常不能太大,否则起不到下拉作用;也不能太小,否则正常工作时会影响复位输出状态。
对于CN810系列电路,也可以通过在复位输出端和VCC之间接一个100千欧姆的电阻,使得在电源电压低于1.15V时,仍能输出有效的复位信号。
CN809 RESET
CN809 RESET

图3 VCC=0V时复位信号有效

这篇关于你喜欢什么样的狗?喜欢内狗还是外狗?论看门狗的重要性:极低功耗微处理器复位电路CN803/CN809/CN810的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021140

相关文章

HNU-2023电路与电子学-实验3

写在前面: 一、实验目的 1.了解简易模型机的内部结构和工作原理。 2.分析模型机的功能,设计 8 重 3-1 多路复用器。 3.分析模型机的功能,设计 8 重 2-1 多路复用器。 4.分析模型机的工作原理,设计模型机控制信号产生逻辑。 二、实验内容 1.用 VERILOG 语言设计模型机的 8 重 3-1 多路复用器; 2.用 VERILOG 语言设计模型机的 8 重 2-1 多

可测试,可维护,可移植:上位机软件分层设计的重要性

互联网中,软件工程师岗位会分前端工程师,后端工程师。这是由于互联网软件规模庞大,从业人员众多。前后端分别根据各自需求发展不一样的技术栈。那么上位机软件呢?它规模小,通常一个人就能开发一个项目。它还有必要分前后端吗? 有必要。本文从三个方面论述。分别是可测试,可维护,可移植。 可测试 软件黑盒测试更普遍,但很难覆盖所有应用场景。于是有了接口测试、模块化测试以及单元测试。都是通过降低测试对象

临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题,常见的两种是: 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类); 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平; 尽管传统的机器学习提供了高效的建模预测与初步的特征重

LTspice模拟CCM和DCM模式的BUCK电路实验及参数计算

关于BUCK电路的原理可以参考硬件工程师炼成之路写的《 手撕Buck!Buck公式推导过程》.实验内容是将12V~5V的Buck电路仿真,要求纹波电压小于15mv. CCM和DCM的区别: CCM:在一个开关周期内,电感电流从不会到0. DCM:在开关周期内,电感电流总会到0. CCM模式Buck电路仿真: 在用LTspice模拟CCM电路时,MOS管驱动信号频率为100Khz,负载为10R(可自

Flutter 中的低功耗蓝牙概述

随着智能设备数量的增加,控制这些设备的需求也在增加。对于多种使用情况,期望设备在需要进行控制的同时连接到互联网会受到很大限制,因此是不可行的。在这些情况下,使用低功耗蓝牙(也称为 Bluetooth LE 或 BLE)似乎是最佳选择,因为它功耗低,在我们的手机中无处不在,而且无需连接到更广泛的网络。因此,蓝牙应用程序的需求也在不断增长。 通过阅读本文,您将了解如何开始在 Flutter 中开

DTO类实现Serializable接口的重要性

所谓序列化,简单一点理解,就是将对象转换成字节数组,反序列化是将字节数组恢复为对象。凡是要在网络上传输的对象、要写入文件的对象、要保存到数据库中的对象都要进行序列化。Java对象是无法直接保存到文件中,或是存入数据库中的。如果要保存到文件中,或是存入数据库中,就要将对象序列化,即转换为字节数组才能保存到文件中或是数据库中。文件或者数据库中的字节数组拿出来之后要转换为对象才能被我们识别,即反序列化。

HDU2523(论scanf的重要性)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2523 解题思路: 先把a数组排个序,然后把| xi - xj |的所有组合值求出来,把b数组在排个序。这时候要考虑出现1、1、1、2、2、3这种相邻两个一样的情况,开一个vis标记数组把相邻的数进行合并,这样就可以顺利取到第k大的值。 特别说明,论scanf和printf的重要性,用cin

论互联网安全的重要性

论互联网安全的重要性 当今,计算机领域什么最火?当属人工智能了,纵观各大IT巨头google,facebook,apple,Baidu都有自己的人工智能实验室,google有谷歌大脑,其主要计划是研究当今最顶级的技术,比如无人驾驶汽车,google眼镜,百度成立IDL深度研究院等等。这是不是代表,未来我们的生活将因人工智能的发展而发生巨大变化?我想是的。人工智能要基于海量数据处理,这些数据包含大

Circuit Design RC 震荡电路

为了测试一个信号放大器,手边又没有合适的信号发生器,所以就需要自己手动来一个信号发生器。。。。。由于所需的频率大概也不会太高,手边也没有电感,所以选择用RC震荡电路来实现这个功能。 借鉴的网页: http://www.eepw.com.cn/article/283745.htm RC振荡电路,采用RC选频网络构成,适用于低频振荡,一般用于产生1Hz~1MHz(fo=1/2πRC)的低频信号。

Circuit Design 三极管驱动蜂鸣器电路 及 蜂鸣器两端电压正确但是不响的解决方案

利用三极管进行电流放大的蜂鸣器驱动电路图: (百度图片找的) 我用有源蜂鸣器实现的这个电路,但是蜂鸣器不响。 details: 1. VCC =5V 蜂鸣器两端的直接电压约为4.5V, 但是蜂鸣器不响。 2. 将蜂鸣器直接接在4.5V的电源两端,蜂鸣器响。(说明蜂鸣器是好的) 3. 测了三极管各个管脚的电压, 和理论上的是一致的。 情况很奇怪,换了好几个三极管结果都是一样的,