神经网络-------人工神经网络

2024-06-01 03:12

本文主要是介绍神经网络-------人工神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是神经网络和神经元

人工神经网络(英语:Artificial Neural Network,ANN),简称 神经网络(Neural Network,NN)或 类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型,用于对函数进行估计或近似。

人脑可以看做是一个生物神经网络,由众多的神经元连接而成。当神经元“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过了一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经元发送化学物质。在生物神经网络中,每个神经元与其他神经元相连。各个神经元传递复杂的电信号,树突接收到输入信号,然后对信号进行处理,通过轴突输出信号。

图片

二、如何构建神经网络中的神经元呢?

受生物神经元的启发,人工神经网络有大量的节点(神经元),神经元接收来自其他神经元或外部源的输入,同时每个输入都有一个相关的权值(w),它是根据该输入对当前神经元的重要性来确定的,对该输入加权并与其他输入求和后,经过一个激活函数 f,计算得到该神经元的输出。

图片

图片

其中:

x1,x2......xn代表各输入变量;w1,w2.....wn指各输入变量对应的参数;b为偏置;f为激活函数,常用的激活函数有:sigmodi,tanh,relu;y为输出的结果
三、神经元的工作方式:

每个神经元都与其他神经元相连接,每个连接都有相应的权重(weights)。一个神经元的输出将作为另一个神经元的输入。每个神经元执行以下操作:

加权求和:将输入数据与相应的权重相乘,然后求和。

四、人工神经网络模型

目前已有数十种不同的神经网络模型,其中前馈型网络反馈型网络是两种典型的结构模型。

图片

1、前馈神经网络

各个神经元接受前一级的输入,并输出到下一级,模型中没有反馈,层与层之间通过“全连接”进行链接,即两个相邻层之间的神经元完全成对连接,但层内的神经元不相互连接。

图片

2、反馈神经网络

在反馈网络中(Feedback NNs),输入信号决定反馈系统的初始状态,系统经过一系列状态转以后,逐渐收敛于平衡状态,这一状态就是反馈网络经计算后输出的结果。

图片

五、神经网络的学习方式

人工神经网络的工作过程主要分为两个阶段:

学习阶段,对它进行训练,即让其学会它要做的事情,此时各个计算单元状态不变,学习过程就是各连接权上的权值不断调整的过程。学习结束,网络连接权值调整完毕,学习的知识就分布记忆(存储)在网络中的各个连接权上。

工作阶段,此时各个连接权值固定,计算单元变化,以达到某种稳定状态。

图片

六、激活函数

活函数有什么用?

 (1)引入非线性因素。 

  在我们面对线性可分的数据集的时候,简单的用线性分类器即可解决分类问题。但是现实生活中的数据往往不是线性可分的,面对这样的数据,一般有两个方法:引入非线性函数、线性变换。

     (2)线性变换

  就是把当前特征空间通过一定的线性映射转换到另一个空间,让数据能够更好的被分类。

激活函数是如何引入非线性因素的呢?

  在神经网络中,为了避免单纯的线性组合,我们在每一层的输出后面都添加一个激活函数(sigmoid、tanh、ReLu等)。

1、Sigmoid函数

Sigmoid函数的优点在于输出范围有限,数据在传递的过程中不容易发散,并且其输出范围为(0,1),可以在输出层表示概率值,如图所示。Sigmoid函数的导数是非零的,很容易计算

• Sigmoid函数的主要缺点是梯度下降非常明显,且两头过于平坦,容易出现梯度消失的情况,输出的值域不对称。

图片

图片

图片

2、tanh函数(双曲正切函数)

tanh函数是sigmoid的向下平移和伸缩后的结果。对它进行了变形后,穿过了(0,0)点,并且值域介于+1和-1之间。

tanh函数是总体上都优于sigmoid函数的激活函数。

图片

图片

特点:

解决了Sigmoid函数输出值域不对称问题。它是完全可微分和反对称的,对称中心在原点。然而它的输出值域两头依旧过于平坦,梯度消失问题仍然存在。

3、ReLu函数

ReLU函数是目前神经网络里常用的激活函数,由于ReLU函数是线性特点使其收敛速度比Sigmoid、Tanh更快,而且没有梯度饱和的情况出现。计算更加高效,相比于Sigmoid、Tanh函数,只需要一个阈值就可以得到激活值,不需要对输入归一化来防止达到饱和。

图片

图片

七、正向传播算法

神经网络是用训练数据去训练网络模型并得到所需模型的过程,主要包括正向学习反向调整两个过程。

正向学习就是从输入层开始,自底向上进行特征学习,最后在输出层输出预测结果。

反向调整就是将预测结果和标签进行对比,反向调整模型参数的过程。

图片

正向传播的的详细原理

图片

图片

八、反向传播算法

反向传播(backward propagation,简称 BP)指的是计算神经网络参数梯度的方法。其原理是基于微积分中的链式规则,按相反的顺序从输出层到输入层遍历网络,依次计算每个中间变量和参数的梯度。

链式求导:

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

如果大家对神经网络知识感兴趣可以关注我的微信公众号,里面会分享一些知识干货。

这篇关于神经网络-------人工神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019831

相关文章

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

图神经网络(2)预备知识

1. 图的基本概念         对于接触过数据结构和算法的读者来说,图并不是一个陌生的概念。一个图由一些顶点也称为节点和连接这些顶点的边组成。给定一个图G=(V,E),  其 中V={V1,V2,…,Vn}  是一个具有 n 个顶点的集合。 1.1邻接矩阵         我们用邻接矩阵A∈Rn×n表示顶点之间的连接关系。 如果顶点 vi和vj之间有连接,就表示(vi,vj)  组成了

自然语言处理系列六十三》神经网络算法》LSTM长短期记忆神经网络算法

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十三神经网络算法》LSTM长短期记忆神经网络算法Seq2Seq端到端神经网络算法 总结 自然语言处理系列六十三 神经网络算法》LSTM长短期记忆神经网络算法 长短期记忆网络(LSTM,Long S

神经网络训练不起来怎么办(零)| General Guidance

摘要:模型性能不理想时,如何判断 Model Bias, Optimization, Overfitting 等问题,并以此着手优化模型。在这个分析过程中,我们可以对Function Set,模型弹性有直观的理解。关键词:模型性能,Model Bias, Optimization, Overfitting。 零,领域背景 如果我们的模型表现较差,那么我们往往需要根据 Training l

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题,常见的两种是: 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类); 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平; 尽管传统的机器学习提供了高效的建模预测与初步的特征重