RTAB-Map 闭环检测

2024-05-31 22:32
文章标签 检测 map 闭环 rtab

本文主要是介绍RTAB-Map 闭环检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎访问 https://cgabc.xyz/posts/999fccc5/,持续更新

1. 概述

主要特点:

  • 基于外观(Appearance-Based),通过图像相似度查找回环
  • 贝叶斯滤波算法,估计回环的概率
  • 增量式在线构建视觉词典或词袋,针对一个特定环境不需要预训练过程
  • 内存管理模型,保证实时在线运行

代码主要过程:

  • RTABMap(闭环检测)主入口函数 Rtabmap::process
  • 输入图像image及其idheader.seq)被封装到SensorData
  • 内存更新(Memory::update)
    • 创建签名(Memory::createSignature)
    • Add Signature To STM(Memory::addSignatureToStm)
    • Weight Update, Rehearsal(Memory::rehearsal)
    • Transfer the oldest signature from STM to WM(Memory::moveSignatureToWMFromSTM)
  • 贝叶斯滤波器更新
    • 计算似然(Memory::computeLikelihood)
    • 调整似然(Rtabmap::adjustLikelihood)
    • 计算后验(BayesFilter::computePosterior)
    • 选择最高的闭环假设
  • RETRIEVAL
    • Loop closure neighbors reactivation
    • Load signatures from the database, from LTM to WM(Memory::reactivateSignatures)
  • Update loop closure links: make neighbors of the loop closure in RAM
  • TRANSFER: move the oldest signature from STM to LTM

算法主要流程:

内存管理模型:


回环检测(若不考虑内存管理)过程:

2. 内存更新

2.1 创建签名

代码在 Memory::createSignature 中,其主要过程为

  • 词典更新(VWDictionary::update) 线程
    • 构建FLANN索引
      • 根据描述子构建KDTree索引词典 (_flannIndex->buildKDTreeIndex, kNNFlannKdTree)
      • KDTree的创建基于分层k-mean聚类
    • 更新_dataTree
  • 角点(GFTT)检测(Feature2D::generateKeypoints)
    • 均匀分布(gridRows_, gridCols_)
    • 限制点数(maxFeatures_)
    • 亚像素提取(cv::cornerSubPix)
  • 描述子(BRIEF)计算(Feature2D::generateDescriptors)
  • quantize descriptors to vocabulary(VWDictionary::addNewWords)
    • 描述子匹配(descriptors – dataTree),并计算距离

    • 添加单词 或 参考+1

      • badDist=true(匹配数量特别少,或 NNDR(neareast neighbor distance ratio) 大于 T NNDR T_{\text{NNDR}} TNNDR 阈值_nndrRatio),然后创建VisualWord并添加到_visualWords

      NNDR = dist of the neareast neighbor dist of the second-neareast neighbor \text{NNDR} = \frac{\text{dist of the neareast neighbor}}{\text{dist of the second-neareast neighbor}} NNDR=dist of the second-neareast neighbordist of the neareast neighbor

      • badDist=false,VWDictionary::addWordRef_references+1
  • 创建签名(new Signature)

2.2 添加签名到STM

代码主要在 Memory::addSignatureToStm 中。

  • 更新neighbors,添加链接(signature->addLink)
  • 添加签名ID到_stMem

2.3 更新权重

代码主要在 Memory::rehearsal 中。

  • signature与STM中最新的签名比较,计算相似度RehearsalSimilarity(float sim = signature->compareTo(*sB))

similarity = pairs totalWords \text{similarity} = \frac{\text{pairs}}{\text{totalWords}} similarity=totalWordspairs

  • 相似度 > 阈值_similarityThreshold,假设合并(Memory::rehearsalMerge),更新权重

    • 更新权重(signature->setWeight)

    w A = w A + w B + 1 w_A = w_A + w_B + 1 wA=wA+wB+1

    • 新旧签名合并(Memory::rehearsalMerge)
      • 新签名添加Link
      • 删除旧签名(moveToTrash)

2.4 签名转移 (STM->WM)

Transfer the oldest signature of the short-term memory to the working memory

  • _maxStMemSize = 10
  • Memory::moveSignatureToWMFromSTM:_workingMem.insert_stMem.erase

3. 贝叶斯滤波器更新

  • 计算似然(Memory::computeLikelihood),得到 rawLikelihood

    • 算法一:tf-idf (term frequency–inverse document frequency)

    tf-idf = n w i + log ⁡ N n w n i \text{tf-idf} = \frac{n_{wi} + \log \frac{N}{n_w}}{n_i} tf-idf=ninwi+lognwN

    • 算法二:相似度 RehearsalSimilarity
  • 调整似然(Rtabmap::adjustLikelihood) s j s_j sj,得到 likelihood

    • 依据 似然均值 μ \mu μ 和 似然标准差 σ \sigma σ

    likelihood = { s j − σ μ , if  s j ≥ μ + σ 1 , otherwise . \text{likelihood} = \begin{cases} \frac{s_j - \sigma}{\mu}, \quad \text{if} \ s_j \geq \mu + \sigma \\ 1, \quad\quad\quad \text{otherwise}. \end{cases} likelihood={μsjσ,if sjμ+σ1,otherwise.

  • 计算后验(BayesFilter::computePosterior),得到 posterior

    • 预测(Prediction : Prior*lastPosterior)得到_prediction
    • 更新后验(BayesFilter::updatePosterior)
    • 计算先验(prior = _prediction * posterior)
    • 计算后验
    • 后验归一化

posterior = likelihood × prior \text{posterior} = \text{likelihood} \times \text{prior} posterior=likelihood×prior

4. 回环假设选择

Select the highest hypothesis

  • 根据后验posterior选择最高的假设_highestHypothesis
  • 接受回环,条件如下:
    • _highestHypothesis > _loopThr
    • 对极几何 检查(_epipolarGeometry->check)
      • 单词匹配对数量(EpipolarGeometry::findPairsUnique) > _matchCountMinAccepted
      • 对极约束内点数(EpipolarGeometry::findFFromWords) > _matchCountMinAccepted(RANSAC方法计算基础矩阵)

5. 取回 Retrieval (LTM->WM)

对于形成回环概率最高的定位点,将他那些没有在WM中的邻接定位点,从LTM中取回放入到WM中。

  • Loop closure neighbors reactivation
    • time
    • space
  • Update planned path and get next nodes to retrieve
  • Load signatures from the database (LTM->WM)

6. 转移 Transfer (STM->LTM)

If time allowed for the detection exceeds the limit of real-time, move the oldest signature with less frequency entry (from X oldest) from the short term memory to the long term memory.

具有最低权重的定位点中,存储时间最长的将被转移到LTM(数据库SQLite)中。

参考文献

[1] Appearance-Based Loop Closure Detection for Online Large-Scale and Long-Term Operation
[2] Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words

这篇关于RTAB-Map 闭环检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019224

相关文章

基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别

转发来源:https://swift.ctolib.com/ooooverflow-chinese-ocr.html chinese-ocr 基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别 环境部署 sh setup.sh 使用环境: python 3.6 + tensorflow 1.10 +pytorch 0.4.1 注:CPU环境

如何用外呼工具和CRM管理系统形成销售闭环

使用外呼工具和CRM管理系统形成销售闭环是一个系统性的过程,它涉及客户数据的整合、个性化的营销活动、销售与市场活动的协作、顾客行为的追踪与理解以及营销成效的评估与优化等多个环节。 以下是如何将外呼工具和CRM管理系统有效结合以形成销售闭环的步骤: 1. 客户数据的整合与分析    - 外呼工具在与客户进行初步沟通时,会收集到客户的基本信息和初步需求。    - 这些信息随后被输入到CRM管

Java compiler level does not match the version of the installed Java project facet. map解决方法

右键项目“Properties”,在弹出的“Properties”窗口左侧,单击“Project Facets”,打开“Project Facets”页面。 在页面中的“Java”下拉列表中,选择相应版本就OK了。

基于深度学习的轮廓检测

基于深度学习的轮廓检测 轮廓检测是计算机视觉中的一项关键任务,旨在识别图像中物体的边界或轮廓。传统的轮廓检测方法如Canny边缘检测和Sobel算子依赖于梯度计算和阈值分割。而基于深度学习的方法通过训练神经网络来自动学习图像中的轮廓特征,能够在复杂背景和噪声条件下实现更精确和鲁棒的检测效果。 深度学习在轮廓检测中的优势 自动特征提取:深度学习模型能够自动从数据中学习多层次的特征表示,而不需要

自动驾驶---Perception之Lidar点云3D检测

1 背景         Lidar点云技术的出现是基于摄影测量技术的发展、计算机及高新技术的推动以及全球定位系统和惯性导航系统的发展,使得通过激光束获取高精度的三维数据成为可能。随着技术的不断进步和应用领域的拓展,Lidar点云技术将在测绘、遥感、环境监测、机器人等领域发挥越来越重要的作用。         目前全球范围内纯视觉方案的车企主要包括特斯拉和集越,在达到同等性能的前提下,纯视觉方

算法13—Bit Map算法简介

1. Bit Map算法简介          来自于《编程珠玑》。所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。 2、 Bit Map的基本思想         我们先来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排

YOLOv9摄像头或视频实时检测

1、下载yolov9的项目 地址:YOLOv9 2、使用下面代码进行检测 import torchimport cv2from models.experimental import attempt_loadfrom utils.general import non_max_suppression, scale_boxesfrom utils.plots import plot_o

Java内存泄漏检测和分析介绍

在Java中,内存泄漏检测和分析是一个重要的任务,可以通过以下几种方式进行:   1. 使用VisualVM VisualVM是一个可视化工具,可以监控、分析Java应用程序的内存消耗。它可以显示堆内存、垃圾收集、线程等信息,并且可以对内存泄漏进行分析。 2. 使用Eclipse Memory Analyzer Eclipse Memory Analyzer(MAT)是一个强大的工具,可

基于CDMA的多用户水下无线光通信(3)——解相关多用户检测

继续上一篇博文,本文将介绍基于解相关的多用户检测算法。解相关检测器的优点是因不需要估计各个用户的接收信号幅值而具有抗远近效应的能力。常规的解相关检测器有运算量大和实时性差的缺点,本文针对异步CDMA的MAI主要来自干扰用户的相邻三个比特周期的特点,给出了基于相邻三个匹配滤波器输出数据的截断解相关检测算法。(我不知道怎么改公式里的字体,有的字母在公式中重复使用了,请根据上下文判断字母含义) 1

玩转Web之Json(四)---json与(Object/List/Map)的相互转化

在做web应用时,经常需要将json转化成Object/list/map或者将Object/List/map转化成json,通过简单封装可以在写代码是减轻很多负担。本文将给出json转化的一系列方法。 闲话不 多说,直接上代码: 先是Object /List /Map转化为Json /* 功能 :将一个对象转成json数组* 参数 :object对象* retu