RTAB-Map 闭环检测

2024-05-31 22:32
文章标签 检测 map 闭环 rtab

本文主要是介绍RTAB-Map 闭环检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎访问 https://cgabc.xyz/posts/999fccc5/,持续更新

1. 概述

主要特点:

  • 基于外观(Appearance-Based),通过图像相似度查找回环
  • 贝叶斯滤波算法,估计回环的概率
  • 增量式在线构建视觉词典或词袋,针对一个特定环境不需要预训练过程
  • 内存管理模型,保证实时在线运行

代码主要过程:

  • RTABMap(闭环检测)主入口函数 Rtabmap::process
  • 输入图像image及其idheader.seq)被封装到SensorData
  • 内存更新(Memory::update)
    • 创建签名(Memory::createSignature)
    • Add Signature To STM(Memory::addSignatureToStm)
    • Weight Update, Rehearsal(Memory::rehearsal)
    • Transfer the oldest signature from STM to WM(Memory::moveSignatureToWMFromSTM)
  • 贝叶斯滤波器更新
    • 计算似然(Memory::computeLikelihood)
    • 调整似然(Rtabmap::adjustLikelihood)
    • 计算后验(BayesFilter::computePosterior)
    • 选择最高的闭环假设
  • RETRIEVAL
    • Loop closure neighbors reactivation
    • Load signatures from the database, from LTM to WM(Memory::reactivateSignatures)
  • Update loop closure links: make neighbors of the loop closure in RAM
  • TRANSFER: move the oldest signature from STM to LTM

算法主要流程:

内存管理模型:


回环检测(若不考虑内存管理)过程:

2. 内存更新

2.1 创建签名

代码在 Memory::createSignature 中,其主要过程为

  • 词典更新(VWDictionary::update) 线程
    • 构建FLANN索引
      • 根据描述子构建KDTree索引词典 (_flannIndex->buildKDTreeIndex, kNNFlannKdTree)
      • KDTree的创建基于分层k-mean聚类
    • 更新_dataTree
  • 角点(GFTT)检测(Feature2D::generateKeypoints)
    • 均匀分布(gridRows_, gridCols_)
    • 限制点数(maxFeatures_)
    • 亚像素提取(cv::cornerSubPix)
  • 描述子(BRIEF)计算(Feature2D::generateDescriptors)
  • quantize descriptors to vocabulary(VWDictionary::addNewWords)
    • 描述子匹配(descriptors – dataTree),并计算距离

    • 添加单词 或 参考+1

      • badDist=true(匹配数量特别少,或 NNDR(neareast neighbor distance ratio) 大于 T NNDR T_{\text{NNDR}} TNNDR 阈值_nndrRatio),然后创建VisualWord并添加到_visualWords

      NNDR = dist of the neareast neighbor dist of the second-neareast neighbor \text{NNDR} = \frac{\text{dist of the neareast neighbor}}{\text{dist of the second-neareast neighbor}} NNDR=dist of the second-neareast neighbordist of the neareast neighbor

      • badDist=false,VWDictionary::addWordRef_references+1
  • 创建签名(new Signature)

2.2 添加签名到STM

代码主要在 Memory::addSignatureToStm 中。

  • 更新neighbors,添加链接(signature->addLink)
  • 添加签名ID到_stMem

2.3 更新权重

代码主要在 Memory::rehearsal 中。

  • signature与STM中最新的签名比较,计算相似度RehearsalSimilarity(float sim = signature->compareTo(*sB))

similarity = pairs totalWords \text{similarity} = \frac{\text{pairs}}{\text{totalWords}} similarity=totalWordspairs

  • 相似度 > 阈值_similarityThreshold,假设合并(Memory::rehearsalMerge),更新权重

    • 更新权重(signature->setWeight)

    w A = w A + w B + 1 w_A = w_A + w_B + 1 wA=wA+wB+1

    • 新旧签名合并(Memory::rehearsalMerge)
      • 新签名添加Link
      • 删除旧签名(moveToTrash)

2.4 签名转移 (STM->WM)

Transfer the oldest signature of the short-term memory to the working memory

  • _maxStMemSize = 10
  • Memory::moveSignatureToWMFromSTM:_workingMem.insert_stMem.erase

3. 贝叶斯滤波器更新

  • 计算似然(Memory::computeLikelihood),得到 rawLikelihood

    • 算法一:tf-idf (term frequency–inverse document frequency)

    tf-idf = n w i + log ⁡ N n w n i \text{tf-idf} = \frac{n_{wi} + \log \frac{N}{n_w}}{n_i} tf-idf=ninwi+lognwN

    • 算法二:相似度 RehearsalSimilarity
  • 调整似然(Rtabmap::adjustLikelihood) s j s_j sj,得到 likelihood

    • 依据 似然均值 μ \mu μ 和 似然标准差 σ \sigma σ

    likelihood = { s j − σ μ , if  s j ≥ μ + σ 1 , otherwise . \text{likelihood} = \begin{cases} \frac{s_j - \sigma}{\mu}, \quad \text{if} \ s_j \geq \mu + \sigma \\ 1, \quad\quad\quad \text{otherwise}. \end{cases} likelihood={μsjσ,if sjμ+σ1,otherwise.

  • 计算后验(BayesFilter::computePosterior),得到 posterior

    • 预测(Prediction : Prior*lastPosterior)得到_prediction
    • 更新后验(BayesFilter::updatePosterior)
    • 计算先验(prior = _prediction * posterior)
    • 计算后验
    • 后验归一化

posterior = likelihood × prior \text{posterior} = \text{likelihood} \times \text{prior} posterior=likelihood×prior

4. 回环假设选择

Select the highest hypothesis

  • 根据后验posterior选择最高的假设_highestHypothesis
  • 接受回环,条件如下:
    • _highestHypothesis > _loopThr
    • 对极几何 检查(_epipolarGeometry->check)
      • 单词匹配对数量(EpipolarGeometry::findPairsUnique) > _matchCountMinAccepted
      • 对极约束内点数(EpipolarGeometry::findFFromWords) > _matchCountMinAccepted(RANSAC方法计算基础矩阵)

5. 取回 Retrieval (LTM->WM)

对于形成回环概率最高的定位点,将他那些没有在WM中的邻接定位点,从LTM中取回放入到WM中。

  • Loop closure neighbors reactivation
    • time
    • space
  • Update planned path and get next nodes to retrieve
  • Load signatures from the database (LTM->WM)

6. 转移 Transfer (STM->LTM)

If time allowed for the detection exceeds the limit of real-time, move the oldest signature with less frequency entry (from X oldest) from the short term memory to the long term memory.

具有最低权重的定位点中,存储时间最长的将被转移到LTM(数据库SQLite)中。

参考文献

[1] Appearance-Based Loop Closure Detection for Online Large-Scale and Long-Term Operation
[2] Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words

这篇关于RTAB-Map 闭环检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019224

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

Collection List Set Map的区别和联系

Collection List Set Map的区别和联系 这些都代表了Java中的集合,这里主要从其元素是否有序,是否可重复来进行区别记忆,以便恰当地使用,当然还存在同步方面的差异,见上一篇相关文章。 有序否 允许元素重复否 Collection 否 是 List 是 是 Set AbstractSet 否

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机

基于stm32的河流检测系统-单片机毕业设计

文章目录 前言资料获取设计介绍功能介绍具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机设计精品