[Algorithm][动态规划][子序列问题][最长递增子序列][摆动序列]详细讲解

本文主要是介绍[Algorithm][动态规划][子序列问题][最长递增子序列][摆动序列]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0.子序列 vs 子数组
  • 1.最长递增子序列
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.摆动序列
    • 1.题目链接
    • 2.题目链接
    • 3.代码实现


0.子序列 vs 子数组

  • 子序列
    • 相对顺序是跟源字符串/数组是一致的
    • 但是元素和元素之间,在源字符串/数组中可以是不连续的
    • 一般时间复杂度: O ( 2 n ) O(2^n) O(2n)
  • 子数组
    • 在源字符串/数组中挑出来,必须是连续的
      • 子串与子数组是一个意思
    • 一般时间复杂度: O ( N 2 ) O(N^2) O(N2)
  • 子序列其实相当于包含了子数组
  • 子序列问题经典解法:两层循环

1.最长递增子序列

1.题目链接

  • 最长递增子序列

2.算法原理详解

  • 注意:本题思考方式非常有标志性
  • 思路
    • 确定状态表示 -> dp[i]的含义

      • i位置元素为结尾的所有子序列中,最长递增子序列的长度
    • 推导状态转移方程
      请添加图片描述

    • 初始化:vector<int> dp(n, 1)

    • 确定填表顺序:从左往右

    • 确定返回值:整个dp表里的最大值


3.代码实现

int lengthOfLIS(vector<int>& nums) 
{int n = nums.size();vector<int> dp(n, 1);int ret = 1;for(int i = 1; i < n; i++){for(int j = 0; j < i; j++){if(nums[j] < nums[i]){dp[i] = max(dp[i], dp[j] + 1);}}ret = max(ret, dp[i]);}return ret;
}

2.摆动序列

1.题目链接

  • 摆动序列

2.题目链接

  • 思路
    • 确定状态表示 -> dp[i]的含义

      • i位置元素为结尾的所有子序列中,最长的摆动序列的长度
      • 本题状态标识还可以继续划分
        • f[i]:以i位置元素为结尾的所有子序列中,最后一个位置呈现“上升”趋势的最长的摆动序列的长度
        • g[i]:以i位置元素为结尾的所有子序列中,最后一个位置呈现“下降”趋势的最长的摆动序列的长度
    • 推导状态转移方程

      • ji前面的任一一个数
        请添加图片描述
    • 初始化:vector<int> f(n, 1), g(n, 1)

    • 确定填表顺序:从左往右,两个表一起填

    • 确定返回值:两个dp表里的最大值


3.代码实现

int wiggleMaxLength(vector<int>& nums) 
{int n = nums.size();vector<int> f(n, 1), g(n, 1);int ret = 1;for(int i = 1; i < n; i++){for(int j = 0; j < i; j++){if(nums[j] < nums[i]){f[i] = max(f[i], g[j] + 1);}else if(nums[j] > nums[i]){g[i] = max(g[i], f[j] + 1);}}ret = max(ret, max(f[i], g[i]));}return ret;
}

这篇关于[Algorithm][动态规划][子序列问题][最长递增子序列][摆动序列]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018957

相关文章

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve