在AutoDL上部署Yi-34B大模型

2024-05-31 15:44
文章标签 部署 模型 yi autodl 34b

本文主要是介绍在AutoDL上部署Yi-34B大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在AutoDL上部署Yi-34B大模型


Yi介绍

  • Yi 系列模型是 01.AI 从零训练的下一代开源大语言模型。
  • Yi 系列模型是一个双语语言模型,在 3T 多语言语料库上训练而成,是全球最强大的大语言模型之一。Yi 系列模型在语言认知、常识推理、阅读理解等方面表现优异。
    • Yi-34B-Chat 模型在 AlpacaEval Leaderboard 排名第二,仅次于 GPT-4 Turbo,超过了 GPT-4、Mixtral 和 Claude 等大语言模型(数据截止至 2024 年 1 月)
    • Yi-34B 模型在 Hugging Face Open LLM Leaderboard(预训练)与 C-Eval 基准测试中荣登榜首,在中文和英文语言能力方面均超过了其它开源模型,例如,Falcon-180B、Llama-70B 和 Claude(数据截止至 2023 年 11 月)。

部署步骤

硬件要求

部署 Yi 系列模型之前,确保硬件满足以下要求。

模型最低显存推荐GPU示例
Yi-6B-Chat15 GBRTX 3090 RTX 4090 A10 A30
Yi-6B-Chat-4bits4 GBRTX 3060 RTX 4060
Yi-6B-Chat-8bits8 GBRTX 3070 RTX 4060
Yi-34B-Chat72 GB4 x RTX 4090 A800 (80GB)
Yi-34B-Chat-4bits20 GBRTX 3090 RTX 4090 A10 A30 A100 (40GB)
Yi-34B-Chat-8bits38 GB2 x RTX 3090 2 x RTX 4090 A800 (40GB)

运行实例

image-20240228103634489

  • 进入终端
    • image-20240228103723138image-20240228103741512
  • 安装 modelscope
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple modelscope
  • 进入ipython终端
    • ipython

下载模型

from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('01ai/Yi-34B-Chat-4bits', cache_dir='autodl-tmp', revision='master', ignore_file_pattern='.bin')

从modelscope上下载Yi-34B-Chat-4bits模型,存放目录为autodl-tmp

版本是master,去除后缀为.bin的文件,这里只需要下载safetensors后缀的模型

image-20240228110450280

安装 vllm

vLLM是伯克利大学LMSYS组织开源的大语言模型高速推理框架,旨在极大地提升实时场景下的语言模型服务的吞吐与内存使用效率。vLLM是一个快速且易于使用的库,用于 LLM 推理和服务,可以和HuggingFace 无缝集成。vLLM利用了全新的注意力算法「PagedAttention」,有效地管理注意力键和值。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple vllm
  • 开启 openai 兼容的服务
python -m vllm.entrypoints.openai.api_server \--model /root/autodl-tmp/01ai/Yi-34B-Chat-4bits \--served-model-name 01ai/Yi-34B-Chat-4bits \--trust-remote-code \--max-model-len 2048 -q awq 

– model : 指定模型的位置

– served-model-name : 指定模型的名称

– trust-remote-code : 接收它执行的代码

– max-model-len : 接收的上下文大小

-q awq : 量化方式为awq

  • 查看资源占用
nvidia-smi

image-20240228114659417

显示占用的23G显存

  • 测试服务
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{"model": "01ai/Yi-34B-Chat-4bits","prompt": "San Francisco is a","max_tokens": 7,"temperature": 0
}'

执行 benchmark 测试

  • 关闭之前的API Server服务

  • 开启AutoDL的学术加速

    • source /etc/network_turbo
  • 下载vllm 源码

    • git clone https://github.com/vllm-project/vllm
    • cd vllm/benchmarks
  • 测试

    • python benchmark_throughput.py \--backend vllm \--input-len 128 --output-len 512 \--model /root/autodl-tmp/01ai/Yi-34B-Chat-4bits \-q awq --num-prompts 100 --seed 1100 \--trust-remote-code \--max-model-len 2048
      

gradio 的 chat 组件

  • 安装openai
pip install openai -U
  • 安装gradio
pip install gradio==3.41
  • 创建一个python脚本 chat.py
from openai import OpenAI
import gradio as gr# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"# 创建一个 OpenAI 客户端,用于与 API 服务器进行交互
client = OpenAI(api_key=openai_api_key,base_url=openai_api_base,
)def predict(message, history):# 将聊天历史转换为 OpenAI 格式history_openai_format = [{"role": "system", "content": "你是个靠谱的 AI 助手,尽量详细的解答用户的提问。"}]for human, assistant in history:history_openai_format.append({"role": "user", "content": human })history_openai_format.append({"role": "assistant", "content":assistant})history_openai_format.append({"role": "user", "content": message})# 创建一个聊天完成请求,并将其发送到 API 服务器stream = client.chat.completions.create(model='01ai/Yi-34B-Chat-4bits',   # 使用的模型名称messages= history_openai_format,  # 聊天历史temperature=0.8,                  # 控制生成文本的随机性stream=True,                      # 是否以流的形式接收响应extra_body={'repetition_penalty': 1, 'stop_token_ids': [7]})# 从响应流中读取并返回生成的文本partial_message = ""for chunk in stream:partial_message += (chunk.choices[0].delta.content or "")yield partial_message# 创建一个聊天界面,并启动它,share=True 让 gradio 为我们提供一个 debug 用的域名
gr.ChatInterface(predict).queue().launch(share=True)
  • 开启一个新的终端执行命令: python chat.py

稍等它在终端给我们生成一个 xxxx.gradio.live 的域名,访问这个域名就可以进行测试了。

  • 如果gradio无法生成可分享的外部连接

image-20240228120522790

  • 解决办法 :

    • 1.下载此文件:https://cdn-media.huggingface.co/frpc-gradio-0.2/frpc_linux_amd64
      如果auto服务器下载不到,可以手动上传
      2.将下载的文件重命名为:frpc_linux_amd64_v0.2
      mv frpc_linux_amd64 frpc_linux_amd64_v0.2
      3.将文件移动到以下位置/root/miniconda3/lib/python3.8/site-packages/gradio
      cp frpc_linux_amd64_v0.2 /root/miniconda3/lib/python3.8/site-packages/gradio
      4.给予执行权限
      chmod +x /root/miniconda3/lib/python3.8/site-packages/gradio/frpc_linux_amd64_v0.2
      

image-20240228121358881

效果

  • 3090 运行起来之后,问题问到第二个之后就会OOM,显存几乎全部占满

image-20240228121902280

这篇关于在AutoDL上部署Yi-34B大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018348

相关文章

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架