使用llama-index连接neo4j知识图谱 达成大模型构建查询知识图谱功能

本文主要是介绍使用llama-index连接neo4j知识图谱 达成大模型构建查询知识图谱功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用llama-index连接neo4j知识图谱 达成本地大模型构建查询知识图谱功能

    • 概述
      • 目标
      • 主要步骤
    • 1. 安装依赖项
    • 2. 配置环境
      • 配置ollama
    • 3. 使用Neo4j构建知识图谱
      • 准备Neo4j
      • 实例化Neo4jGraph KG索引
    • 4. 查询知识图谱
      • 查询并仅发送三元组到LLM
      • 查询并发送包含文本的结果到LLM
    • 5. 使用嵌入查询
    • 6. 手动添加三元组并构建图谱(可选)

当然!我将提供更多详细的解释,帮助您更好地理解如何使用Llama-Index连接Neo4j知识图谱,实现大模型构建和查询功能。

概述

目标

我们的目标是使用Llama-Index来连接到Neo4j,以构建和查询知识图谱。通过这个过程,我们能够将文档中的信息转化为知识图谱,并通过大语言模型进行查询。
以下参考llama-index官方实现

主要步骤

  1. 安装依赖项:我们需要安装一些Python库来支持我们的工作。
  2. 配置环境:我们需要设置一些环境变量来使用OpenAI或Azure OpenAI的API。
  3. 构建知识图谱:我们将使用Neo4j来存储和管理知识图谱。
  4. 查询知识图谱:我们将通过Llama-Index查询Neo4j中的数据。
  5. (可选)手动添加三元组:我们还可以手动添加三元组到知识图谱中。

1. 安装依赖项

首先,我们需要安装一些Python库。这些库包括Llama-Index的相关组件和Neo4j的连接库。

%pip install llama-index-llms-openai
%pip install llama-index-graph-stores-neo4j
%pip install llama-index-embeddings-openai
%pip install llama-index-llms-azure-openai
%pip install neo4j

这些库的功能如下:

  • llama-index-llms-openaillama-index-llms-azure-openai:用于连接OpenAI和Azure OpenAI的API,以获取NLP模型。
  • llama-index-graph-stores-neo4j:用于与Neo4j数据库交互。
  • llama-index-embeddings-openai:用于处理文本嵌入。
  • neo4j:Neo4j数据库的官方Python驱动程序。

2. 配置环境

为了使用OpenAI或Azure OpenAI的API,我们需要配置一些环境变量和API密钥。

配置ollama

import os
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, StorageContext, KnowledgeGraphIndex
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.ollama import Ollama
from llama_index.core import KnowledgeGraphIndex, SimpleDirectoryReader, StorageContext
from llama_index.graph_stores.neo4j import Neo4jGraphStore# 设置嵌入模型
Settings.embed_model = OllamaEmbedding(model_name="znbang/bge:large-zh-v1.5-f32")# 设置LLM模型
Settings.llm = Ollama(model="qwen:7b", request_timeout=360.0

3. 使用Neo4j构建知识图谱

准备Neo4j

我们需要配置Neo4j数据库的连接信息。

username = "neo4j"
password = "your-neo4j-password"
url = "bolt://your-neo4j-url:7687"
database = "neo4j"

实例化Neo4jGraph KG索引

接下来,我们使用Llama-Index从文档中提取数据,并将其存储到Neo4j图数据库中。

from llama_index.core import KnowledgeGraphIndex, SimpleDirectoryReader
from llama_index.core import StorageContext
from llama_index.graph_stores.neo4j import Neo4jGraphStorefrom llama_index.llms.openai import OpenAI
from IPython.display import Markdown, display# 加载文档数据
documents = SimpleDirectoryReader("path_to_your_documents"
).load_data()# 初始化Neo4j图存储
graph_store = Neo4jGraphStore(username=username,password=password,url=url,database=database,
)# 创建存储上下文
storage_context = StorageContext.from_defaults(graph_store=graph_store)# 构建知识图谱索引
index = KnowledgeGraphIndex.from_documents(documents,storage_context=storage_context,max_triplets_per_chunk=2,
)

4. 查询知识图谱

查询并仅发送三元组到LLM

我们可以查询知识图谱并仅发送三元组到大语言模型进行处理。

query_engine = index.as_query_engine(include_text=False, response_mode="tree_summarize"
)response = query_engine.query("Tell me more about Interleaf")
display(Markdown(f"<b>{response}</b>"))

查询并发送包含文本的结果到LLM

我们还可以查询知识图谱并发送包含文本的结果到大语言模型。

query_engine = index.as_query_engine(include_text=True, response_mode="tree_summarize"
)
response = query_engine.query("Tell me more about what the author worked on at Interleaf"
)
display(Markdown(f"<b>{response}</b>"))

5. 使用嵌入查询

我们还可以在构建索引时包含文本嵌入,以便在查询时使用嵌入相似度进行更准确的查询。

# 清理数据集
graph_store.query("""
MATCH (n) DETACH DELETE n
"""
)# 构建包含嵌入的索引
index = KnowledgeGraphIndex.from_documents(documents,storage_context=storage_context,max_triplets_per_chunk=2,include_embeddings=True,
)query_engine = index.as_query_engine(include_text=True,response_mode="tree_summarize",embedding_mode="hybrid",similarity_top_k=5,
)response = query_engine.query("Tell me more about what the author worked on at Interleaf"
)
display(Markdown(f"<b>{response}</b>"))

6. 手动添加三元组并构建图谱(可选)

我们还可以手动向知识图谱中添加三元组。

from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceSplitter()
nodes = node_parser.get_nodes_from_documents(documents)# 初始化一个空的索引
index = KnowledgeGraphIndex.from_documents([], storage_context=storage_context)# 手动添加三元组
node_0_tups = [("author", "worked on", "writing"),("author", "worked on", "programming"),
]
for tup in node_0_tups:index.upsert_triplet_and_node(tup, nodes[0])node_1_tups = [("Interleaf", "made software for", "creating documents"),("Interleaf", "added", "scripting language"),("software", "generate", "web sites"),
]
for tup in node_1_tups:index.upsert_triplet_and_node(tup, nodes[1])query_engine = index.as_query_engine(include_text=False, response_mode="tree_summarize"
)response = query_engine.query("Tell me more about Interleaf")
display(Markdown(f"<b>{response}</b>"))

这篇关于使用llama-index连接neo4j知识图谱 达成大模型构建查询知识图谱功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018331

相关文章

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

W外链微信推广短连接怎么做?

制作微信推广链接的难点分析 一、内容创作难度 制作微信推广链接时,首先需要创作有吸引力的内容。这不仅要求内容本身有趣、有价值,还要能够激起人们的分享欲望。对于许多企业和个人来说,尤其是那些缺乏创意和写作能力的人来说,这是制作微信推广链接的一大难点。 二、精准定位难度 微信用户群体庞大,不同用户的需求和兴趣各异。因此,制作推广链接时需要精准定位目标受众,以便更有效地吸引他们点击并分享链接

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设