基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板

本文主要是介绍基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、开发板资源介绍

该板具有4核心64位的处理器和8TOPS的AI算力,让我们验证一下,在该板上跑深度学习模型的效果如何?

二、配网及远程SSH登录访问系统

在通过microusb连接串口进入开发板调试,在命令行终端执行以下命令 

1)搜索wifi名称 

nmcli dev wifi

 2)连接wifi

sudo nmcli dev wifi connect wifi_name password wifi_passwd

 3)查看IP地址

ip a s wlan0

4)ssh访问

 通过xshell工具访问该开发板

三、安装开发环境

3.1 安装python环境

1)安装openssl 

sudo yum update -y
sudo yum -y groupinstall "Development tools"
sudo yum install openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel sqlite-devel psmisc libffi-devel gcc mariadb-devel

 2)下载安装包

cd /usr/local
sudo wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz
sudo tar -zxvf Python-3.7.0.tgz

 3)切换目录并执行安装

cd Python-3.7.0
sudo ./configure --prefix=/usr/local/python3
sudo make && make install

 4)环境配置

ln -s /usr/local/python3/bin/python3.7 /usr/bin/python3
ln -s /usr/local/python3/bin/pip3.7 /usr/bin/pip3

 3.2 创建虚拟环境

virtualenv ~/ecgclassification/venv --python=python3.9

其它相关配置

# 激活虚拟环境
source ~/ecgclassification/venv/bin/activate
#查看虚拟环境下的python路径
which python
# 安装相关包
pip install numpy  -i https://pypi.tuna.tsinghua.edu.cn/simple
# 退出虚拟环境
deactivate

 3.3 安装相关依赖

pip install h5py  -i https://pypi.tuna.tsinghua.edu.cn/simplepip install tensorflow==2.11.0  -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install keras==2.11.0  -i https://pypi.tuna.tsinghua.edu.cn/simplepip install scikit-learn  -i https://pypi.tuna.tsinghua.edu.cn/simplepip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

报错:

(venv) [root@openEuler ECGclassification]# pip install tensorFlow i https://pypi.tuna.tsinghua.edu.cn/simple Collecting https://pypi.tuna.tsinghua.edu.cn/simple Downloading https://pypi.tuna.tsinghua.edu.cn/simple (32.5 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 32.5/32.5 MB 1.1 MB/s eta 0:00:00 ERROR: Cannot unpack file /tmp/pip-unpack-s5nhhe64/simple.html (downloaded from /tmp/pip-req-build-89nbvw_j, content-type: text/html); cannot detect archive format ERROR: Cannot determine archive format of /tmp/pip-req-build-89nbvw_j

安装包名大小写敏感,更改正确! 

 解决方式:

sudo yum install hdf5-devel

 

再次安装tensoflow成功

 

 

四、心电疾病分类任务介绍及移植深度学习模型

    依据采集的单导联心电数据,构建的深度学习模型进行数据训练,基于训练生成的模型对心电数据进行疾病的分类任务(多分类-具体为7分类)。将该模型部署于该开发板上进行运行测试。

执行模型:

python3 ./PredictOnly.py

报错:

 model = tf.keras.models.load_model(model_path) File "/usr/local/lib/python3.9/site-packages/keras/src/saving/saving_api.py", line 193, in load_model raise ValueError( ValueError: File format not supported: filepath=save/CNN. Keras 3 only supports V3 `.keras` files and legacy H5 format files (`.h5` extension). Note that the legacy SavedModel format is not supported by `load_model()` in Keras 3. In order to reload a TensorFlow SavedModel as an inference-only layer in Keras 3, use `keras.layers.TFSMLayer(save/CNN, call_endpoint='serving_default')` (note that your `call_endpoint` might have a different name).

原因是安装TensorFlow版本不对,将2.16.0降到2.11.0后,以及keras从3.3.0降到2.9.0后正常。 

模型为:CNN架构

模型大小:pd格式,40Mb左右。 

五、测试结果

5.1  以pd格式的模型加载进行预测结果对比

 1)在R900p电脑上运行

执行时间1.04s

2)在该板子上的执行时间:

执行时间3.48s:

 5.2  以pd格式的模型转换为tflite格式并进行预测结果对比

 1)在R900p电脑上运行

执行时间0.08s

2)在该板子上的执行时间:

执行时间0.07s:

六、体验总结

对于深度学习模型的数据预测推理结果对比情况,在加载pd模型进行预测时:预测结果时间在3.48s。转换为tflite格式后部署,在笔记本电脑上运行的时间和在该开发板上运行的时间相当,在0.1s内,而且在该板子上运行的时间明显更快一些。因此通过对比结果来看,该开发板的计算性能不错,板子的运算能力能在实际场景下满足深度学习模型实时预测分类的需求。

这篇关于基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1016853

相关文章

QT移植到RK3568开发板的方法步骤

《QT移植到RK3568开发板的方法步骤》本文主要介绍了QT移植到RK3568开发板的方法步骤,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录前言一、获取SDK1. 安装依赖2. 获取SDK资源包3. SDK工程目录介绍4. 获取补丁包二

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件

《如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件》本文介绍了如何使用Docker部署FTP服务器和Nginx,并通过HTTP访问FTP中的文件,通过将FTP数据目录挂载到N... 目录docker部署FTP和Nginx并通过HTTP访问FTP里的文件1. 部署 FTP 服务器 (

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Ubuntu 22.04 服务器安装部署(nginx+postgresql)

《Ubuntu22.04服务器安装部署(nginx+postgresql)》Ubuntu22.04LTS是迄今为止最好的Ubuntu版本之一,很多linux的应用服务器都是选择的这个版本... 目录是什么让 Ubuntu 22.04 LTS 变得安全?更新了安全包linux 内核改进一、部署环境二、安装系统