使用pytorch构建ResNet50模型训练猫狗数据集

2024-05-30 06:04

本文主要是介绍使用pytorch构建ResNet50模型训练猫狗数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集

1.导包

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms, models
import numpy as np
import matplotlib.pyplot as plt
import os
from tqdm.auto import tqdm  # 引入tqdm库以显示进度条

2.数据预处理

ResNet50模型适合的图片大小为224x244

# 定义数据转换
data_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'test': transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}

3.加载数据集和模型构建

# 加载数据集
data_dir = 'catdog_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),data_transforms[x])for x in ['train', 'test']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=4,shuffle=True, num_workers=4)for x in ['train', 'test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'test']}
class_names = image_datasets['train'].classes# 加载ResNet-50模型
model = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)# 替换最后的全连接层以适配我们的分类问题
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(class_names))# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

4.训练

# 训练次数
num_epochs = 10# 初始化训练次数计数器
train_count = 0
for epoch in range(num_epochs):  # num_epochs 是你希望训练的轮数for phase in ['train', 'test']:if phase == 'train':model.train()else:model.eval()running_loss = 0.0running_corrects = 0# 使用tqdm显示进度条with tqdm(total=len(dataloaders[phase]), desc=f'Epoch {epoch+1}/{num_epochs}', leave=False) as progress_bar:for inputs, labels in dataloaders[phase]:optimizer.zero_grad()with torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)if phase == 'train':loss.backward()optimizer.step()running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / dataset_sizes[phase]epoch_acc = running_corrects.double() / dataset_sizes[phase]progress_bar.set_postfix(loss=epoch_loss, acc=epoch_acc)progress_bar.update(1)print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')# 更新训练次数计数器train_count += 1print(f'Training Count: {train_count}')

训练过程

5.预测

import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as plt# 定义模型的类别数量
num_classes = 2# 加载模型
model = torchvision.models.resnet50(pretrained=False)
# 修改模型的fc层以匹配训练时的结构
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
# 加载保存的权重
model.load_state_dict(torch.load('mg_ResNet50model.pth'))
model.eval()# 图像预处理
preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])# 测试图片
img_path = 'mao_1.jpg'  # 替换为你的图片路径
img = Image.open(img_path)
img_t = preprocess(img)# 扩展维度,因为模型需要4维输入(Batch, Channels, Height, Width)
batch_t = torch.unsqueeze(img_t, 0)# 预测
with torch.no_grad():out = model(batch_t)# 获取最高分数的类别
_, index = torch.max(out, 1)# 可视化结果
plt.imshow(img)
plt.title(f'Predicted: {index.item()}')
plt.show()

预测效果

0就是猫咪,1就是小狗

全部代码

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms, models
import numpy as np
import matplotlib.pyplot as plt
import os
from tqdm.auto import tqdm  # 引入tqdm库以显示进度条# 定义数据转换
data_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'test': transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}# 加载数据集
data_dir = 'catdog_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),data_transforms[x])for x in ['train', 'test']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=4,shuffle=True, num_workers=4)for x in ['train', 'test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'test']}
class_names = image_datasets['train'].classes# 加载ResNet-50模型
model = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)# 替换最后的全连接层以适配我们的分类问题
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(class_names))# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)# 训练次数
num_epochs = 10# 初始化训练次数计数器
train_count = 0
for epoch in range(num_epochs):  # num_epochs 是你希望训练的轮数for phase in ['train', 'test']:if phase == 'train':model.train()else:model.eval()running_loss = 0.0running_corrects = 0# 使用tqdm显示进度条with tqdm(total=len(dataloaders[phase]), desc=f'Epoch {epoch+1}/{num_epochs}', leave=False) as progress_bar:for inputs, labels in dataloaders[phase]:optimizer.zero_grad()with torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)if phase == 'train':loss.backward()optimizer.step()running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / dataset_sizes[phase]epoch_acc = running_corrects.double() / dataset_sizes[phase]progress_bar.set_postfix(loss=epoch_loss, acc=epoch_acc)progress_bar.update(1)print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')# 更新训练次数计数器train_count += 1print(f'Training Count: {train_count}')

这篇关于使用pytorch构建ResNet50模型训练猫狗数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015768

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2