计算机算法中的数字表示法——原码、反码、补码

2024-05-30 03:52

本文主要是介绍计算机算法中的数字表示法——原码、反码、补码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.前言
  • 2.研究数字表示法的意义
  • 3.数字表示法
  • 3.1 无符号整数
  • 3.2 有符号数值
  • 3.3 二进制补码(Two's Complement, 2C)
  • 3.4 二进制反码(也称作 1 的补码, One's Complement, 1C)
  • 3.5 减 1 表示法(Diminished one System, D1)
  • 3.6 原码、反码、补码总结

1.前言

昨天有粉丝让我讲解下定点数和浮点数,本来这部分是打算在FPGA入门系列的最后面来讲的。作者想开的系列真的很多,比如开发FPGA需要学会相关软件Matlab、Vivado、ModelSim等等的使用,每个软件做一个系列;FPGA入门教程做一个系列;基础数字信号处理做一个系列;通信相关的系列;IP核使用详解系列;FPGA数字积木系列(自己设计的一些参数化IP)。但是这些无疑都会花大量的时间去构思和整理资料,会出的比较慢,请读者耐心等待。

这篇文章就先介绍定点数和浮点数的概念,因为要真正讲清楚还得从原码、补码和反码开始讲起。要仔细研究的建议去多看看相关书籍,讲清楚原理之后再讲Matlab里面计算的浮点数怎么转换为定点数到FPGA里面进行使用,以及FPGA里面计算的定点数,怎么在Matlab里面又转换为浮点数。

这里需要重点强调的是,原理虽然很枯燥,但是真的很重要,是绝对不能忽视的,如果原理弄的一知半解,就开始去做处理,后期该踩得坑一个也少不了。

2.研究数字表示法的意义

在计算机算法中,有两个基本设计准则是非常重要的:分别是数字表示法和代数运算的实现。例如:定点数或浮点数就是常用且可行的数字表示法。一些基本的运算,像加法器和乘法器,更为繁琐的运算,诸如求平方根和应用CORDIC算法计算角函数的有效实现,都要以可行的数字表示法为基础实现。
FPGA由于其物理位级编程结构的特点,提供了大量实现数字信号处理算法所需要的计算机算法。这恰好与带有定点多级累加器内核的可编程数字信号处理器(programmable digital signal processors,PDSP)相反。在FPGA设计中仔细地选择位宽就能够从本质上做到节约。

3.数字表示法

在工程的早期阶段,必须仔细考虑,确定是使用定点数还是浮点数更适合于解决问题。一般可以认为:定点数的实现具有更高的速度和更低廉的成本;而浮点数则具有更高的动态范围且不需要换算,这对较为复杂的算法可能更适合。下图给出了传统和非传统定点数和浮点数的数字表示法的一个概观。两套系统都由许多各自的标准所覆盖,当然,如果需要的话也可以以一种专有形式实现。

3.1 无符号整数

X X X 是 一个 N N N 位无符号二进制数, 则其范围是 [ 0 , 2 N − 1 ] \left[0,2^N-1\right] [0,2N1], 表达式如下:
X = ∑ n = 0 N − 1 x n 2 n X=\sum_{n=0}^{N-1} x_n 2^n X=n=0N1xn2n

其中 x n x_n xn X X X 的第 n n n 位二进制数字(也就是 x n ∈ [ 0 , 1 ] x_n \in[0,1] xn[0,1] )。数字 x 0 x_0 x0 称作最低有效位(Least Significant Bit, LSB), 具有相当于个位的权重。数字 x N − 1 x_{N-1} xN1 就是最高有效位(Most Significant Bit, MSB), 具有相当于 2 N − 1 2^{N-1} 2N1 的权重。

3.2 有符号数值

在有符号数字表示法中, 数字和符号是单独表示的。第一位代表符号, 余下的 N − 1 N-1 N1 位代表数字, 表达式如下:
X = { ∑ n = 0 N − 1 x n 2 n X ≥ 0 − ∑ n = 0 N − 1 x n 2 n X < 0 X= \begin{cases}\sum_{n=0}^{N-1} x_n 2^n & X \geq 0 \\ -\sum_{n=0}^{N-1} x_n 2^n & X<0\end{cases} X={n=0N1xn2nn=0N1xn2nX0X<0

表达式的范围是 [ − 2 N − 1 , 2 N − 1 ] \left[-2^{N-1}, 2^{N-1}\right] [2N1,2N1], 有符号数字表示法的优点就是简化了溢出的问题, 但缺点就是加法需要根据哪一个操作数更大来进行区分运算。

3.3 二进制补码(Two’s Complement, 2C)

有符号整数的 N N N 位二进制补码表达式如下:
X = { ∑ ∞ − 0 N − 1 x n 2 n X ≥ 0 2 k − ∑ n = 0 1 − 1 x n 2 n X < 0 X= \begin{cases}\sum_{\infty-0}^{N-1} x_n 2^n & X \geq 0 \\ 2^k-\sum_{n=0}^{1-1} x_n 2^n & X<0\end{cases} X={0N1xn2n2kn=011xn2nX0X<0
其范围是 [ − 2 N − 1 , 2 N − 1 − 1 ] \left[-2^{N-1}, 2^{N-1}-1\right] [2N1,2N11]。目前数字信号处理领域,最常用的就是用二进制补码来表示有符号数。这是由于它可以累加多个有符号数,且最终结果也在N位范围内,即可以忽略一切算术上的溢出。

例如,我们计算两个3位数的差(3-2=?):
3 10 ↔ 01 1 2 C − 2 10 ↔ 11 0 2 C 1 10 ↔ 1.00 1 2 C \begin{array}{rrr} 3_{10} & \leftrightarrow & 011_{2 C} \\ -2_{10} & \leftrightarrow & 110_{2 C} \\ 1_{10} & \leftrightarrow & 1.001_{2 C} \end{array} 3102101100112C1102C1.0012C

溢出可以忽略。所有的计算都是取模 2 N 2^N 2N 。这样就有可能出现不能够正确表示中间值的情形,但只要最终值有效, 结果就是正确的。例如计算 3 位的数字 2 + 2 − 3 2+2-3 2+23, 会得到一个中间值 010 + 010 = 10 0 2 C 010+010=100_{2 C} 010+010=1002C, 也就是 − 4 10 -4_{10} 410, 但是结果 100 − 011 = 100 + 101 = 00 1 2 C 100-011=100+101=001_{2 C} 100011=100+101=0012C, 是正确的。

二进制补码还可以用来实现模 2 N 2^N 2N 的算法, 而且不需要在算法中作任何改动。

3.4 二进制反码(也称作 1 的补码, One’s Complement, 1C)

N N N 位二进制反码数字表示法可以表示的整数范围是 [ − 2 N − 1 − 1 , 2 N − 1 − 1 ] \left[-2^{N-1}-1,2^{N-1}-1\right] [2N11,2N11] 。在二进制反码中,正整数和负整数除了符号位之外具有相同的表示方法。那么“0”就有正的和负的,两个表达式。二进制反码中有符号数的标准表达式如下:
X = { ∑ n = 0 N − 1 x n 2 n X ≥ 0 2 N − 1 − ∑ n = 0 N − 1 x n 2 n X < 0 X= \begin{cases}\sum_{n=0}^{N-1} x_n 2^n & X \geq 0 \\ 2^N-1-\sum_{n=0}^{N-1} x_n 2^n & X<0\end{cases} X={n=0N1xn2n2N1n=0N1xn2nX0X<0

请看下面的简单示例:
3 10 ↔ 0 1 1 1 C − 2 10 ↔ 1 0 1 1 C 1 10 ↔ 1. 0 0 0 1 C 进位 → → → 1 1 C 1 10 ↔ 0 0 1 1 C \begin{array}{rrrrrr} 3_{10} & \leftrightarrow & & 0 & 1 & 1_{1 C} \\ -2_{10} & \leftrightarrow & & 1 & 0 & 1_{1 C} \\ 1_{10} & \leftrightarrow & 1. & 0 & 0 & 0_{1 C} \\ 进位 & & \rightarrow & \rightarrow & \rightarrow & 1_{1 C} \\ 1_{10} & \leftrightarrow & & 0 & 0 & 1_{1 C} \end{array} 310210110进位1101.0100100011C11C01C11C11C
在二进制反码中需要, “进位问绕(carry wrap-around)” 加法。在最高有效位与最低有效位相加得到正确结果时, 就会出现进位。

尽管如此, 这种数字表示法还走能够有效地实现模 2 N − 1 2^N-1 2N1 运算, 而且不需要校正。因此二进制反码在实现特定的 DSP 算法(例如: 整数计算不 2 N − 1 2^N-1 2N1 的 Mersenne 变换)时, 还是有其特殊价值的。

3.5 减 1 表示法(Diminished one System, D1)

减1表示法是一种有偏移的数学表示法。正整数与二.进制补码相比减少了 1。 N N N 位 D1数值范围是 [ − 2 N − 1 , 2 N − 1 ] ( \left[-2^{N-1}, 2^{N-1}\right]( [2N1,2N1]( 不含 0 ) ) ) 。D1 数字表示法的编码规则定义如下:
X = { ∑ n = 0 A − 1 x n 2 n − 1 X ≥ 0 2 N − ∑ n = 0 N − 1 x n 2 n X < 0 2 N X = 0 X= \begin{cases}\sum_{n=0}^{A-1} x_n 2^n-1 & X \geq 0 \\ 2^N-\sum_{n=0}^{N-1} x_n 2^n & X<0 \\ 2^N & X=0\end{cases} X= n=0A1xn2n12Nn=0N1xn2n2NX0X<0X=0

从下面两个 D1 数相加可以看到, 对于 D1 而言还必须计算补码和颠倒进位的加法。
3 10 ↔ 0 1 0 D 1 − 2 10 ↔ 1 1 0 D 1 1 10 ↔ 1. 0 0 0 D 1 进位 → . -1 → 0 D 1 1 10 ↔ 0 0 0 D 1 \begin{array}{rrrrrr} 3_{10} & \leftrightarrow & & 0 & 1 & 0_{D 1} \\ -2_{10} & \leftrightarrow & & 1 & 1 & 0_{D 1} \\ 1_{10} & \leftrightarrow & 1. & 0 & 0 & 0_{D 1} \\ 进位 & & \rightarrow &\fbox{. -1} & \rightarrow & 0_{D 1} \\ 1_{10} & \leftrightarrow & & 0 & 0 & 0_{D 1} \end{array} 310210110进位1101.010. -1011000D10D10D10D10D1
D1 数不需要在算法上作任何改动就能够有效地实现模 2 N + 1 2^N+1 2N+1 运算。比如可以利用这一结论在 2 N + 1 2^N+1 2N+1 计算环中实现费尔出 NTT(Fermat Network Transfer Table, Fermat 网络传输表)。

3.6 原码、反码、补码总结

上面说了这么多,又是公式又是例子的估计很多人都开始晕了,现在直接总结口诀如下:

对于有符号数而言:

1.二进制的最高位是符号位:0表示正数,1表示负数(口诀0——>0,1——>-)。

2.正数的原码、反码、补码都是一样的(三码合一)。

3.负数的反码 = 它的原码符号位不变,其他位取反(0——>1,1——>0)。

4.负数的补码 = 它的反码 + 1,负数的反码 = 负数的补码 - 1。

5.0的反码、补码都是0。

6.在计算机运算的时候,都是以补码的方式来运算的。

7.当我们看运算结果的时候,要看它的原码。

原码、反码、补码

关注微信公众号获取更多资讯:​​​​![在这里插入图片描述](https://img-

这篇关于计算机算法中的数字表示法——原码、反码、补码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015512

相关文章

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.2 Name That Number(数字字母转化)

巧妙的利用code[b[0]-'A'] 将字符ABC...Z转换为数字 需要注意的是重新开一个数组 c [ ] 存储字符串 应人为的在末尾附上 ‘ \ 0 ’ 详见代码: /*ID: who jayLANG: C++TASK: namenum*/#include<stdio.h>#include<string.h>int main(){FILE *fin = fopen (

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费