本文主要是介绍计算机算法中的数字表示法——原码、反码、补码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
- 1.前言
- 2.研究数字表示法的意义
- 3.数字表示法
- 3.1 无符号整数
- 3.2 有符号数值
- 3.3 二进制补码(Two's Complement, 2C)
- 3.4 二进制反码(也称作 1 的补码, One's Complement, 1C)
- 3.5 减 1 表示法(Diminished one System, D1)
- 3.6 原码、反码、补码总结
1.前言
昨天有粉丝让我讲解下定点数和浮点数,本来这部分是打算在FPGA入门系列的最后面来讲的。作者想开的系列真的很多,比如开发FPGA需要学会相关软件Matlab、Vivado、ModelSim等等的使用,每个软件做一个系列;FPGA入门教程做一个系列;基础数字信号处理做一个系列;通信相关的系列;IP核使用详解系列;FPGA数字积木系列(自己设计的一些参数化IP)。但是这些无疑都会花大量的时间去构思和整理资料,会出的比较慢,请读者耐心等待。
这篇文章就先介绍定点数和浮点数的概念,因为要真正讲清楚还得从原码、补码和反码开始讲起。要仔细研究的建议去多看看相关书籍,讲清楚原理之后再讲Matlab里面计算的浮点数怎么转换为定点数到FPGA里面进行使用,以及FPGA里面计算的定点数,怎么在Matlab里面又转换为浮点数。
这里需要重点强调的是,原理虽然很枯燥,但是真的很重要,是绝对不能忽视的,如果原理弄的一知半解,就开始去做处理,后期该踩得坑一个也少不了。
2.研究数字表示法的意义
在计算机算法中,有两个基本设计准则是非常重要的:分别是数字表示法和代数运算的实现。例如:定点数或浮点数就是常用且可行的数字表示法。一些基本的运算,像加法器和乘法器,更为繁琐的运算,诸如求平方根和应用CORDIC算法计算角函数的有效实现,都要以可行的数字表示法为基础实现。
FPGA由于其物理位级编程结构的特点,提供了大量实现数字信号处理算法所需要的计算机算法。这恰好与带有定点多级累加器内核的可编程数字信号处理器(programmable digital signal processors,PDSP)相反。在FPGA设计中仔细地选择位宽就能够从本质上做到节约。
3.数字表示法
在工程的早期阶段,必须仔细考虑,确定是使用定点数还是浮点数更适合于解决问题。一般可以认为:定点数的实现具有更高的速度和更低廉的成本;而浮点数则具有更高的动态范围且不需要换算,这对较为复杂的算法可能更适合。下图给出了传统和非传统定点数和浮点数的数字表示法的一个概观。两套系统都由许多各自的标准所覆盖,当然,如果需要的话也可以以一种专有形式实现。
3.1 无符号整数
设 X X X 是 一个 N N N 位无符号二进制数, 则其范围是 [ 0 , 2 N − 1 ] \left[0,2^N-1\right] [0,2N−1], 表达式如下:
X = ∑ n = 0 N − 1 x n 2 n X=\sum_{n=0}^{N-1} x_n 2^n X=n=0∑N−1xn2n
其中 x n x_n xn 是 X X X 的第 n n n 位二进制数字(也就是 x n ∈ [ 0 , 1 ] x_n \in[0,1] xn∈[0,1] )。数字 x 0 x_0 x0 称作最低有效位(Least Significant Bit, LSB), 具有相当于个位的权重。数字 x N − 1 x_{N-1} xN−1 就是最高有效位(Most Significant Bit, MSB), 具有相当于 2 N − 1 2^{N-1} 2N−1 的权重。
3.2 有符号数值
在有符号数字表示法中, 数字和符号是单独表示的。第一位代表符号, 余下的 N − 1 N-1 N−1 位代表数字, 表达式如下:
X = { ∑ n = 0 N − 1 x n 2 n X ≥ 0 − ∑ n = 0 N − 1 x n 2 n X < 0 X= \begin{cases}\sum_{n=0}^{N-1} x_n 2^n & X \geq 0 \\ -\sum_{n=0}^{N-1} x_n 2^n & X<0\end{cases} X={∑n=0N−1xn2n−∑n=0N−1xn2nX≥0X<0
表达式的范围是 [ − 2 N − 1 , 2 N − 1 ] \left[-2^{N-1}, 2^{N-1}\right] [−2N−1,2N−1], 有符号数字表示法的优点就是简化了溢出的问题, 但缺点就是加法需要根据哪一个操作数更大来进行区分运算。
3.3 二进制补码(Two’s Complement, 2C)
有符号整数的 N N N 位二进制补码表达式如下:
X = { ∑ ∞ − 0 N − 1 x n 2 n X ≥ 0 2 k − ∑ n = 0 1 − 1 x n 2 n X < 0 X= \begin{cases}\sum_{\infty-0}^{N-1} x_n 2^n & X \geq 0 \\ 2^k-\sum_{n=0}^{1-1} x_n 2^n & X<0\end{cases} X={∑∞−0N−1xn2n2k−∑n=01−1xn2nX≥0X<0
其范围是 [ − 2 N − 1 , 2 N − 1 − 1 ] \left[-2^{N-1}, 2^{N-1}-1\right] [−2N−1,2N−1−1]。目前数字信号处理领域,最常用的就是用二进制补码来表示有符号数。这是由于它可以累加多个有符号数,且最终结果也在N位范围内,即可以忽略一切算术上的溢出。
例如,我们计算两个3位数的差(3-2=?):
3 10 ↔ 01 1 2 C − 2 10 ↔ 11 0 2 C 1 10 ↔ 1.00 1 2 C \begin{array}{rrr} 3_{10} & \leftrightarrow & 011_{2 C} \\ -2_{10} & \leftrightarrow & 110_{2 C} \\ 1_{10} & \leftrightarrow & 1.001_{2 C} \end{array} 310−210110↔↔↔0112C1102C1.0012C
溢出可以忽略。所有的计算都是取模 2 N 2^N 2N 。这样就有可能出现不能够正确表示中间值的情形,但只要最终值有效, 结果就是正确的。例如计算 3 位的数字 2 + 2 − 3 2+2-3 2+2−3, 会得到一个中间值 010 + 010 = 10 0 2 C 010+010=100_{2 C} 010+010=1002C, 也就是 − 4 10 -4_{10} −410, 但是结果 100 − 011 = 100 + 101 = 00 1 2 C 100-011=100+101=001_{2 C} 100−011=100+101=0012C, 是正确的。
二进制补码还可以用来实现模 2 N 2^N 2N 的算法, 而且不需要在算法中作任何改动。
3.4 二进制反码(也称作 1 的补码, One’s Complement, 1C)
N N N 位二进制反码数字表示法可以表示的整数范围是 [ − 2 N − 1 − 1 , 2 N − 1 − 1 ] \left[-2^{N-1}-1,2^{N-1}-1\right] [−2N−1−1,2N−1−1] 。在二进制反码中,正整数和负整数除了符号位之外具有相同的表示方法。那么“0”就有正的和负的,两个表达式。二进制反码中有符号数的标准表达式如下:
X = { ∑ n = 0 N − 1 x n 2 n X ≥ 0 2 N − 1 − ∑ n = 0 N − 1 x n 2 n X < 0 X= \begin{cases}\sum_{n=0}^{N-1} x_n 2^n & X \geq 0 \\ 2^N-1-\sum_{n=0}^{N-1} x_n 2^n & X<0\end{cases} X={∑n=0N−1xn2n2N−1−∑n=0N−1xn2nX≥0X<0
请看下面的简单示例:
3 10 ↔ 0 1 1 1 C − 2 10 ↔ 1 0 1 1 C 1 10 ↔ 1. 0 0 0 1 C 进位 → → → 1 1 C 1 10 ↔ 0 0 1 1 C \begin{array}{rrrrrr} 3_{10} & \leftrightarrow & & 0 & 1 & 1_{1 C} \\ -2_{10} & \leftrightarrow & & 1 & 0 & 1_{1 C} \\ 1_{10} & \leftrightarrow & 1. & 0 & 0 & 0_{1 C} \\ 进位 & & \rightarrow & \rightarrow & \rightarrow & 1_{1 C} \\ 1_{10} & \leftrightarrow & & 0 & 0 & 1_{1 C} \end{array} 310−210110进位110↔↔↔↔1.→010→0100→011C11C01C11C11C
在二进制反码中需要, “进位问绕(carry wrap-around)” 加法。在最高有效位与最低有效位相加得到正确结果时, 就会出现进位。
尽管如此, 这种数字表示法还走能够有效地实现模 2 N − 1 2^N-1 2N−1 运算, 而且不需要校正。因此二进制反码在实现特定的 DSP 算法(例如: 整数计算不 2 N − 1 2^N-1 2N−1 的 Mersenne 变换)时, 还是有其特殊价值的。
3.5 减 1 表示法(Diminished one System, D1)
减1表示法是一种有偏移的数学表示法。正整数与二.进制补码相比减少了 1。 N N N 位 D1数值范围是 [ − 2 N − 1 , 2 N − 1 ] ( \left[-2^{N-1}, 2^{N-1}\right]( [−2N−1,2N−1]( 不含 0 ) ) ) 。D1 数字表示法的编码规则定义如下:
X = { ∑ n = 0 A − 1 x n 2 n − 1 X ≥ 0 2 N − ∑ n = 0 N − 1 x n 2 n X < 0 2 N X = 0 X= \begin{cases}\sum_{n=0}^{A-1} x_n 2^n-1 & X \geq 0 \\ 2^N-\sum_{n=0}^{N-1} x_n 2^n & X<0 \\ 2^N & X=0\end{cases} X=⎩ ⎨ ⎧∑n=0A−1xn2n−12N−∑n=0N−1xn2n2NX≥0X<0X=0
从下面两个 D1 数相加可以看到, 对于 D1 而言还必须计算补码和颠倒进位的加法。
3 10 ↔ 0 1 0 D 1 − 2 10 ↔ 1 1 0 D 1 1 10 ↔ 1. 0 0 0 D 1 进位 → . -1 → 0 D 1 1 10 ↔ 0 0 0 D 1 \begin{array}{rrrrrr} 3_{10} & \leftrightarrow & & 0 & 1 & 0_{D 1} \\ -2_{10} & \leftrightarrow & & 1 & 1 & 0_{D 1} \\ 1_{10} & \leftrightarrow & 1. & 0 & 0 & 0_{D 1} \\ 进位 & & \rightarrow &\fbox{. -1} & \rightarrow & 0_{D 1} \\ 1_{10} & \leftrightarrow & & 0 & 0 & 0_{D 1} \end{array} 310−210110进位110↔↔↔↔1.→010. -10110→00D10D10D10D10D1
D1 数不需要在算法上作任何改动就能够有效地实现模 2 N + 1 2^N+1 2N+1 运算。比如可以利用这一结论在 2 N + 1 2^N+1 2N+1 计算环中实现费尔出 NTT(Fermat Network Transfer Table, Fermat 网络传输表)。
3.6 原码、反码、补码总结
上面说了这么多,又是公式又是例子的估计很多人都开始晕了,现在直接总结口诀如下:
对于有符号数而言:
1.二进制的最高位是符号位:0表示正数,1表示负数(口诀0——>0,1——>-)。
2.正数的原码、反码、补码都是一样的(三码合一)。
3.负数的反码 = 它的原码符号位不变,其他位取反(0——>1,1——>0)。
4.负数的补码 = 它的反码 + 1,负数的反码 = 负数的补码 - 1。
5.0的反码、补码都是0。
6.在计算机运算的时候,都是以补码的方式来运算的。
7.当我们看运算结果的时候,要看它的原码。
关注微信公众号获取更多资讯:![在这里插入图片描述](https://img-
这篇关于计算机算法中的数字表示法——原码、反码、补码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!