Marin说PCB之如何在主板上补偿链路中的走线的等长误差?

2024-05-29 23:52

本文主要是介绍Marin说PCB之如何在主板上补偿链路中的走线的等长误差?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一场雨把我困在这里,你冷漠地看我没有穿雨衣淋成落汤鸡。今天刚刚出门时候看天气预报没有雨,于是我就没有带雨衣骑电动车去公司了,谁知道回来的路上被淋成狗了。天气预报就像是女人的脾气那样,不能完全相信的

好了,我们言归正传了,这期文章是给大家分享一下我之前设计的一个单板上如何在主板上补偿MIPI走线的等长误差值,各位帖子们打起精神来了,下面就是本期的内容解析了。

小编我之前做的一个单板是主板,扣板是一个相机模组给我司的印度分部的阿三同事做了。主板上的SOC手册上MIPI线长的要求是建议小于10英寸,这个10英寸的数值其实是指示整个MIPI走线是包含了相机的部分加上主板上的MIPI走线的长度的。

由于相机那边的单板设计的是软硬结合板子,如下图所示:

由于单板的设计交期比较紧张,而且阿三他们那边在设计的时候说单板上是没有空间单独给MIPI线绕等长了。我们从芯片手册的要求可以得知:

  1. The length difference between the true signal and the complementary signal of the differential pair are within ±1 ps ,The delay difference of DATA from CLK are within +/-10 ps 。

这个上面的+/-10PS,我们可以按照以往的设计经验就是:1PS=6MIL去计算的,若要使详细的知道其中原因可以看下面的解释:

若是我们把介电常数按照4来算,其公式就是:

V=12/√4=6in/ns,换算一下单位后就是6MIL/PS

上面这个不是我们本期内容的重点啊,我们本期主要讲解的是如何在我们主板上面把对接板子上面的走线的等长误差补上,我i这边给大家分享一下我之前的设计经验。

1,首先拿到对插器件上的MIPI走线的长度,数据如下图所示

从上面的表格中我们可以得知这组BUS线中国RX_D1这对走线是最长的了,不过好在所有MIPI项的N和P的等长都已经做好了。

2,把我们的单板上的MIPI走线的长度也提去出来到表格中,最好也是先把所有MIPI走线上的N和P的等长都已提前做好。(总的链路上差分线上N和P的误差是+-1PS的,分支上做严格一些,尽量主板上按照+-0.5PS,软硬结合板子(相机模组)上的也是+-0.5PS,当然你要是能够做的更加严格就更好了)。

3,把相机模组上的MIPI走线的长度和主板上的连接器和主芯片上的MIPI走线的长度都换算成走线的延时。

其中相机模组上的MIPI走线的长度我是按照6MIL/PS来计算的,主要原因是MIPI走线主要都是用微带线布线的,介电常数我就按照Er值为4来算了。

但是我们主板上的MIPI走线主要是在ART08层,层叠信息如下所示:

由于ART08层走线的参考平面是GND07和GND09这两个层,通过板厂那边提供的层叠,我们找到了其对应的ER值,我们去找到这两个参考面的平均ER值就好,然后把这个ER平均值带入上面的公式中:v=12/√ER平均,最后得出的值为5.5MIL/PS来计算的。

最后我们可以得出一个总的MIPI线的延时和走线长度的表格:

通过这个表格我们可以得知目前整理系统链路上MIPI线走线最长的就是J3_CAM_CSI_RXD1这组MIPI线了。通常的MIPI—BUS我们都是把MIPI-CLK作为基准线,通过把最长线先去缩短再去绕这组BUS的等长的,我们可以先把表格中的MIPI-CLK(J3_CAM_CSI_RXC)这组线和MIPI-DATA1(J3_CAM_CSI_RXD1)总的走线差值算出来,其他的数据线以是以此类推,表格数据如下所示:

那我们主板上的MIPI线绕线完成的长度应该是多少呢,其实就是之前的绕完差分对N和P的的误差后的MIPI线长度加上上图中需要绕线的长度,总的就是我们主板上实际绕线完成后的长度了

好了既然我们已经知道了我们主板上的MIPI需要绕线完成后的总的长度是多少了,那我们的主板上MIPI线等长规则改如何设置呢?

从上面的表格中我们可以得知J3_CAM_CSI_RXD1这组MIPI线是最长的,我们就可以拿这个线作为基准,来算出我们J3IPM上MIPI绕线设置误差的长度了。

最后我们把主板上绕线完成的走线长度整理到表格中,通过表格可以看出来目前的MIPI走线的设计是满足手册上的要求的。

我之前有一个想法就是能不能给把之前主板上的MIPI线需要绕线的长度通过PIN_DELAY表格导入进来再去绕线呢?,这个道理其实和上面的做法是差不多的,主要的区别就是一个把误差值在规则中直接加上了,另外一个是把误差是体现在pin_delay中了。

以上就是本期的所有内容了,我们下期节目不见不散了,最后看完记得帮忙点赞收藏加关注哦,谢谢。

这篇关于Marin说PCB之如何在主板上补偿链路中的走线的等长误差?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014990

相关文章

单位权中误差 详细介绍

单位权中误差(Unit Weight Error, UWE)是用于描述测量数据不确定性的一个统计量,特别是在地理信息系统(GIS)、导航和定位系统中。它主要用于评估和比较不同测量系统或算法的精度。以下是对单位权中误差的详细介绍: 1. 基本概念 单位权中误差(UWE): 定义:单位权中误差表示每个观测值(测量值)在估算中的标准误差。它是误差的一个统计量,主要用于评估测量系统的精度。单位:通常

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假

Allegro PCB--报错

1。 走线上打孔 问题:在走线上打的Via,我通过"Assign net to Via", 给与网络。成功后。 跑Tools\Database check\ Update all DRC(including batch), Via 网络又没有了 原因& 解决方法: VIA没有和走线完全重合 换个方法: 直接在线上打孔 或者走线change成shape, 或者用细导线把孔连到线路上。

链路聚合配置

链路聚合配置前需要将物理接口进行清除,然后将接口加入到聚合内完成对接。 对接端口核心3口4口与财务核心的23口与24口进行对接。 拓扑如下:​​​​​​​ 配置如下: 核心路由器[CK]dhcp enable [CK]interface GigabitEthernet 0/0/0[CK-GigabitEthernet0/0/0]ip address dhcp-alloc[CK]a

华为eNSP:手工链路聚合和动态链路聚合

手工链路聚合(静态链路聚合) 一、拓扑图 二、交换机配置过程 [s1]int Eth-Trunk 1#创建进入链路聚合组1[s1-Eth-Trunk1]trunkport g0/0/1#将g0/0/1口加入聚合组1[s1-Eth-Trunk1]trunkport g0/0/2[s1-Eth-Trunk1]trunkport g0/0/3[s1-Eth-Trunk1]quit 配

SNAT的链路流程

A主机,有公网ip,比如1.1.1.1               有内网ip,比如192.168.1.1 B主机, 有内网ip,比如192.168.1.123 A主机和B主机在同一局域网,用交换机连接。或者在云平台,两个属于同一个vpc下的同一个subnet,也就是在同一个虚拟私人网络下的,同一个子网内。 如何实现B主机通过A主机的公网ip访问公网的服务? 这个就是snat解决的问题

QDI主板的保护功能导致的电脑关机故障

由于QDI主板中的一种系统保护技术CPU Triple protection被激活导致电脑在刚开机几分钟后就自动关机的。   这种技术在用户开机时就开始运行,对CPU的温度进行实时的侦测,当发现CPU达到一定温度时即强行将CPU进行降速工作状态。如果温度继续升高,达到危险值时便会强行关机,以保护CPU,不会因为温度过高而烧毁。作为QDI的创新技术这一,这项技术主要是为了避免因CPU风扇安装不善

【深度学习 误差计算】10分钟了解下均方差和交叉熵损失函数

常见的误差计算函数有均方差、交叉熵、KL 散度、Hinge Loss 函数等,其中均方差函数和交叉熵函数在深度学习中比较常见,均方差主要用于回归问题,交叉熵主要用于分类问题。下面我们来深刻理解下这两个概念。 1、均方差MSE。 预测值与真实值之差的平方和,再除以样本量。 均方差广泛应用在回归问题中,在分类问题中也可以应用均方差误差。 2、交叉熵 再介绍交叉熵损失函数之前,我们首先来介绍信息

PCB散热设计

随着电子设备性能的不断提升,电路板上的元器件集成度越来越高,发热量也随之增加。如何有效管理这些热量,保证电路板在高温环境下的稳定运行,成为设计过程中一个不可忽视的问题。如果散热不佳,电子元件可能会因过热导致失效,从而影响设备的可靠性和寿命。因此,在设计阶段采取合理的散热措施尤为重要。 一、加散热铜箔与大面积电源地铜箔 散热铜箔是指在PCB(印刷电路板)上增加的金属导热层,通常覆盖在功率密集的

实时数仓链路分享:kafka =SparkStreaming=kudu集成kerberos

点击上方蓝色字体,选择“设为星标” 回复”资源“获取更多资源 大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! 本文档主要介绍在cdh集成kerberos情况下,sparkstreaming怎么消费kafka数据,并存储在kudu里面 假设kafka集成kerberos假设kudu集成kerberos假设用非root用户操作spark基