MATLAB分类与判别模型算法:基于Fisher算法的分类程序【含Matlab源码 MX_002期】

2024-05-29 19:36

本文主要是介绍MATLAB分类与判别模型算法:基于Fisher算法的分类程序【含Matlab源码 MX_002期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法思路介绍:

费舍尔线性判别分析(Fisher's Linear Discriminant Analysis,简称 LDA),用于将两个类别的数据点进行二分类。以下是代码的整体思路:

  1. 生成数据

    • 使用 randn 函数生成随机数,构建两个类别的合成数据点。
    • 第一个类别的数据点分布在以 (2,2) 为中心的正态分布中。
    • 第二个类别的数据点分布在以 (-2,-2) 为中心的正态分布中。
  2. 计算类别均值和散布矩阵

    • 计算每个类别的数据点的均值(类别中心)。
    • 计算每个类别的散布矩阵(类别内离散度矩阵)。
  3. 计算费舍尔线性判别

    • 计算费舍尔判别向量 W,它是使类间散布与类内散布的比值最大化的向量。
    • 计算类内散布矩阵的总和 Sw
    • 利用线性代数中的求逆和乘法,计算出判别向量 W。
  4. 生成测试样本 (x)

         使用 randn 函数生成一个随机测试样本。
  5. 对测试样本进行分类

          将测试样本投影到判别向量 W 上,并与预先设定的阈值比较以进行分类。
  6. 绘图

    • 绘制两个类别的数据点,以红色和蓝色表示。
    • 标记测试样本点,并根据分类结果用不同的颜色表示。
    • 绘制费舍尔判别线,表示分类的决策边界。
    • 绘制判别线上的阈值点。
    • 绘制测试样本在判别线上的投影点,并画出测试样本与其投影点之间的连线。

通过这些步骤,代码能够实现费舍尔线性判别分析,并对新的测试样本进行分类和可视化。

部分代码:

m1=mean(X(1:N,:));
m2=mean(X(N+1:2*N,:));
S1=0;S2=0;
for i=1:NS1=S1+(X(i,:)-m1)*(X(i,:)-m1)';
end
for i=N+1:2*NS1=S1+(X(i,:)-m1)*(X(i,:)-m1)';
end
Sw=S1+S2;
W=inv(Sw)*(m1-m2);
W=W./norm(W)
% ====================================================================
x=randn(1,2);%待判样本
y0=W*(m1+m2)'/2;
if W*x'>y0disp('待判样本属于第一类')hold on,plot(x(1),x(2),'r+','MarkerSize',10,'LineWidth',2)
elsedisp('待判样本属于第二类')hold on,plot(x(1),x(2),'b+','MarkerSize',10,'LineWidth',2)
end
legend('Cluster 1','Cluster 2','x','Location','NW')
% =================画投影直线=====================
X1=-8:0.05:8;
X2=(W(2)/W(1))*X1-6;
hold on,plot(X1,X2,'k','LineWidth',2);
% ================求投影直线上的阈值点============
x0=W(1)*(y0)/W(2);
y0=W(2)^2*y0-6*W(1)^2+W(1)*W(2)*x0;
x0=(y0+6)*W(1)/W(2);
hold on,plot(x0,y0,'ro','MarkerSize',10);
% =============求待判样本在投影直线上的投影点==============
y1=W(1)^2*x(1)+6*W(1)*W(2)+W(1)*W(2)*x(2);
y2=W(2)/W(1)*y1-6;
hold on,plot(y1,y2,'r.','MarkerSize',30);
hold on,plot([x(1) y1],[x(2) y2],'g','LineWidth',2);

结果展示:

获取代码:MATLAB分类与判别模型算法:基于Fisher算法的分类程序

这篇关于MATLAB分类与判别模型算法:基于Fisher算法的分类程序【含Matlab源码 MX_002期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014452

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig