快速幂/快速幂取模/矩阵求解快速幂

2024-05-29 19:18
文章标签 快速 矩阵 求解 取模

本文主要是介绍快速幂/快速幂取模/矩阵求解快速幂,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

因为做了一个Fibonacci的题需要用矩阵+快速幂求解所以引发了下面一系列问题!!!

快速幂:

            快速幂时间复杂度为 O(log2N), 与朴素的O(N)相比效率有了极大的提高。

            例如:

3 ^ 999 = 3 * 3 * 3 * … * 3 
直接乘要做998次乘法。但事实上可以这样做: 
3 ^ 2 = 3 * 3 
3 ^ 4 = (3 ^ 2) * (3 ^ 2) 
…………
3 ^ 256 = (3 ^ 128) * (3 ^ 128) 
3 ^ 512 = (3 ^ 256) * (3 ^ 256) 
再相乘: 
3 ^ 999 
= 3 ^ (512 + 256 + 128 + 64 + 32 + 4 + 2 + 1) 
= (3 ^ 512) * (3 ^ 256) * (3 ^ 128) * (3 ^ 64) * (3 ^ 32) * (3 ^ 4) * (3 ^ 2) * 3 
这样只要做16次乘法。
代码中k%2的意思是如果当前这一位的二进制是 1 还是 0 ,如果是 1 ,则表示将其乘 ans (即加入最终结果),否则不乘 ans (即不加入最终结果)。

 代码:

#include <stdio.h>
int power(int n, int k)
{int ans = 1;while( k ){if(k&1)ans *= n ;k= k/2;n *= n;}return ans ;
}
int main ( ) 
{int n, k;while(scanf("%d %d",&n, &k)!=EOF){printf("%d\n",power(n,k));}
}

快速幂取模:

       快速幂取模还不算太懂,只知道需要对每一个值取模,公式 a*b%c=((a%c)*b)%c

代码:

#include<stdio.h>
int main()
{long long a,b,c,d;int T;scanf("%d",&T);while(T--){scanf("%lld%lld%lld",&a,&b,&c);long long  ans=1;while( b ){if( b%2 )ans = ( ans * a ) % c;b/=2;a = ( a * a ) % c;}printf("%lld\n",ans);}return 0;
}


矩阵+快速幂 求解Fibonacci数列:

           矩阵:矩阵可以看成一个n×m的数表,用二维数组表示
           矩阵乘法:定义矩阵A,B。A和B可以乘法操作当且仅当A的大小是a×b,B的大小是b×c,设矩阵C=AB,则C的大小是a×c,

        且有:

   

            最普通的矩阵乘法是直接三个for循环直接计算而已,所以复杂度是O(n3).

        

            
  运用矩阵乘法快速幂,可以快速计算出矩阵B^(n-1),这样实现将时间复杂度降低到O(log n).

代码(nyoj 698题 A Coin Problem 别人优代码 ):

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<map>
#include<vector>
using namespace std;
const int Max = 10000;
struct M
{long long p[2][2];
};
M mult(M a,M b)
{int i,j,k;M c;for(i=0;i<2;i++)for(j=0;j<2;j++){c.p[i][j]=0;for(k=0;k<2;k++){c.p[i][j]=(c.p[i][j]+a.p[i][k]*b.p[k][j]%Max)%Max;}}return c;
}
M pow(M a,long long k)
{M b={1,0,0,1};while(k){if(k&1)b=mult(b,a);a=mult(a,a);k>>=1;}return b;
}
int main()
{int t;long long n;scanf("%d",&t);while(t--){scanf("%lld",&n);M a={1,1,1,0};M c;c=pow(a,n-1);printf("%lld\n",(c.p[0][0]*2+c.p[0][1]*1)%Max);}return 0;
}


还不明白请点击~>
 

这篇关于快速幂/快速幂取模/矩阵求解快速幂的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014411

相关文章

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1