参数高效微调PEFT(二)快速入门P-Tuning、P-Tuning V2

2024-05-29 09:12

本文主要是介绍参数高效微调PEFT(二)快速入门P-Tuning、P-Tuning V2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参数高效微调PEFT(二)快速入门P-Tuning、P-Tuning V2

参数高效微调PEFT(一)快速入门BitFit、Prompt Tuning、Prefix Tuning

  • 今天,我们继续了解下来自清华大学发布的两种参数高效微调方法P-Tuning和P-Tuning v2。
  • 可以简单的将P-Tuning是认为针对Prompt Tuning的改进,P-Tuning v2认为是针对Prefix Tuning的改进。
  • 不过,P-Tuning是21年3月份发布的,而Prompt Tuning是21年4月发布的。

1 P-Tuning

1.1 P-Tuning概述

  • 论文链接:GPT Understands, Too (202103)

  • Prompt Tuning原理如下图所示:冻结主模型全部参数,在训练数据前加入一小段Prompt,只训练Prompt的表示层,即一个Embedding模块。论文实验表明,只要模型规模够大,简单加入 Prompt tokens 进行微调,就能取得很好的效果。

在这里插入图片描述

  • P Tuning原理如下图所示:在Prompt-Tuning的基础上,对Prompt部分进行进一步的编码计算,加速收敛。具体来说,PEFT中支持两种编码方式,一种是LSTM,一种是MLP。与Prompt-Tuning不同的是,Prompt的形式只有Soft Prompt。

在这里插入图片描述

  • P Tuning将Prompt转换为可以学习的Embedding层,并用MLP+LSTM的方式来对Prompt Embedding进行一层处理

    • 相比Prefix Tuning,P Tuning仅限于输入层,没有在每一层都加virtual token
    • 经过预训练的LM的词嵌入已经变得高度离散,如果随机初始化virtual token,容易优化到局部最优值,而这些virtual token理论是应该有相关关联的。因此,作者通过实验发现用一个prompt encoder来编码会收敛更快,效果更好。即用一个LSTM+MLP去编码这些virtual token以后,再输入到模型
    • 作者在实验中发现,相同参数规模,如果进行全参数微调,Bert的在NLU(自然语言理解)任务上的效果,超过GPT很多;但是在P-Tuning下,GPT可以取得超越Bert的效果。

    在这里插入图片描述

1.2 P-Tuning轻量微调bloom模型

1.2.1 peft中的P-Tuning

我们来看下peft\tuners\p_tuning.py中的内容:

  • 可以看到,peft支持两种编码方式,即MLP和LSTM。
# peft\tuners\p_tuning.py
class PromptEncoderReparameterizationType(str, enum.Enum):MLP = "MLP"LSTM = "LSTM"
  • P-Tuning在peft中默认的编码方式为MLP。
# peft\tuners\p_tuning.py
@dataclass
class PromptEncoderConfig(PromptLearningConfig):encoder_reparameterization_type: Union[str, PromptEncoderReparameterizationType] = field(default=PromptEncoderReparameterizationType.MLP,metadata={"help": "How to reparameterize the prompt encoder"},)encoder_hidden_size: int = field(default=None,metadata={"help": "The hidden size of the prompt encoder"},)encoder_num_layers: int = field(default=2,metadata={"help": "The number of layers of the prompt encoder"},)encoder_dropout: float = field(default=0.0,metadata={"help": "The dropout of the prompt encoder"},)def __post_init__(self):self.peft_type = PeftType.P_TUNING
  • 如下代码所示,经过LSTM或MLP去编码virtual token以后,再输入到模型。
class PromptEncoder(torch.nn.Module):"""Input shape: (`batch_size`, `total_virtual_tokens`)Output shape: (`batch_size`, `total_virtual_tokens`, `token_dim`)"""def __init__(self, config):super().__init__()self.token_dim = config.token_dimself.input_size = self.token_dimself.output_size = self.token_dimself.hidden_size = config.encoder_hidden_sizeself.total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodulesself.encoder_type = config.encoder_reparameterization_type# embeddingself.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.token_dim)if not config.inference_mode:if self.encoder_type == PromptEncoderReparameterizationType.LSTM:lstm_dropout = config.encoder_dropoutnum_layers = config.encoder_num_layers# LSTMself.lstm_head = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=num_layers,   # 深层LSTMdropout=lstm_dropout,   bidirectional=True,      # 双向batch_first=True,        # batch_size在第一维)self.mlp_head = torch.nn.Sequential(torch.nn.Linear(self.hidden_size * 2, self.hidden_size * 2),torch.nn.ReLU(),torch.nn.Linear(self.hidden_size * 2, self.output_size),)elif self.encoder_type == PromptEncoderReparameterizationType.MLP:encoder_num_layers_default = PromptEncoderConfig.encoder_num_layerslayers = [torch.nn.Linear(self.input_size, self.hidden_size),torch.nn.ReLU(),torch.nn.Linear(self.hidden_size, self.hidden_size),torch.nn.ReLU(),torch.nn.Linear(self.hidden_size, self.output_size),]self.mlp_head = torch.nn.Sequential(*layers)else:raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.")def forward(self, indices):# 1、先进行embeddinginput_embeds = self.embedding(indices)# 2、embedding后,再进行编码if self.encoder_type == PromptEncoderReparameterizationType.LSTM:output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0])elif self.encoder_type == PromptEncoderReparameterizationType.MLP:output_embeds = self.mlp_head(input_embeds)else:raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.")return output_embeds
  • peft\peft_model.py中PeftModelForCausalLM代码如下,通过配置文件的类型来判断PEFT方法到底是PrefixTuning/PTuningV2,还是PromptTuning/PTuningV1。
    • 如果是Prompt Tuning/P-TuningV1,则将虚拟token的embedding直接concat到原始输入序列的前面,送入base model模型进行推理。
    • 如果是Prefix Tuning/P-TuningV2,需要给每一个transformer block的key和value添加虚拟token的embedding。
        # peft\peft_model.pyif peft_config.peft_type == PeftType.PREFIX_TUNING:#  如果为PREFIX_TUNING,需要给每一个transformer block的key和value添加虚拟token的embedding......else:# PromptTuning/PTuningV1 分支if inputs_embeds is None:# 计算prompt以外输入内容的embeddinginputs_embeds = self.word_embeddings(input_ids)# concat prompt labelsif labels is not None:prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(labels.device)kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1)# prompt内容的embedding    prompts = self.get_prompt(batch_size=batch_size)prompts = prompts.to(inputs_embeds.dtype)# 将prompt embedding 和原始的embedding 一起送到base model进行推理计算inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)return self.base_model(inputs_embeds=inputs_embeds, **kwargs)

1.2.2 轻量微调bloom模型

我们只需要在加载原模型后、配置训练器前加peft的代码即可。

from peft import PromptEncoderConfig, TaskType, get_peft_model, PromptEncoderReparameterizationTypeconfig = PromptEncoderConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=10,encoder_reparameterization_type=PromptEncoderReparameterizationType.MLP,encoder_dropout=0.1, encoder_num_layers=5, encoder_hidden_size=1024)model = get_peft_model(model, config)# 打印可训练参数信息
model.print_trainable_parameters()trainable params: 3,159,040 || all params: 348,928,000 || trainable%: 0.9053558327219369
  • 配置训练器、模型训练及推理和参数高效微调PEFT(一)快速入门BitFit、Prompt Tuning、Prefix Tuning中2.1一样。
  • 显存消耗情况:
(base) root@autodl-container-adbc11ae52-f2ebff02:~# nvidia-smi 
Tue May 28 15:15:53 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.89.02    Driver Version: 525.89.02    CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:B1:00.0 Off |                  N/A |
| 33%   59C    P2   168W / 250W |   2870MiB / 11264MiB |     45%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

2 P-Tuning V2

Prompt Tuning和P-Tuning等方法存在两个主要的问题:

  • 第一,缺乏模型参数规模和任务通用性。

    • 缺乏规模通用性:Prompt Tuning论文中表明当模型规模超过100亿个参数时,提示优化可以与全量微调相媲美。但是对于那些较小的模型(从100M到1B),提示优化和全量微调的表现有很大差异,这大大限制了提示优化的适用性。
    • 缺乏任务普遍性:尽管Prompt Tuning和P-tuning在一些 NLU 基准测试中表现出优势,但对硬序列标记任务(即序列标注)的有效性尚未得到验证。
  • 第二,缺少深度提示优化。我们知道在Prompt Tuning和P-tuning中,只被插入transformer第一层的输入embedding序列中,在接下来的transformer层中,插入Prompt的位置的embedding是由之前的transformer层计算出来的。

    • 由于序列长度的限制,可调参数的数量是有限的。
    • 输入embedding对模型预测只有相对间接的影响。

考虑到这些问题,作者提出了P-Tuning v2。

2.1 P-Tuning V2概述

  • 论文地址:P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks(2110)
  • Prefix Tuning原理如下图所示:相较于Prompt-Tuning和P-tuning,Prefix-Tuning不再将Prompt加在输入的Embedding层,而是将其作为可学习的前缀,放置在Transformer模型中的每一层中,具体表现形式为past_key_values。

在这里插入图片描述

  • P-Tuning V2和Prefix Tuning的区别主要在于:移除重参数化的编码器,即没有MLP。我们之前分析Prefix Tuning源码时,也看到了在peft库中将P-Tuning V2和Prefix Tuning进行了集成:
# peft/tuners/prefix_tuning.py# Based on https://github.com/THUDM/P-tuning-v2/blob/main/model/prefix_encoder.py
# with some refactor
class PrefixEncoder(torch.nn.Module):def __init__(self, config):super().__init__()self.prefix_projection = config.prefix_projectiontoken_dim = config.token_dimnum_layers = config.num_layersencoder_hidden_size = config.encoder_hidden_sizenum_virtual_tokens = config.num_virtual_tokensif self.prefix_projection and not config.inference_mode:# Use a two-layer MLP to encode the prefix# Prefix Tuning 进行重新参数化编码(通过MLP)self.embedding = torch.nn.Embedding(num_virtual_tokens, token_dim)self.transform = torch.nn.Sequential(torch.nn.Linear(token_dim, encoder_hidden_size),torch.nn.Tanh(),torch.nn.Linear(encoder_hidden_size, num_layers * 2 * token_dim),)else:# P-Tuning v2 self.embedding = torch.nn.Embedding(num_virtual_tokens, num_layers * 2 * token_dim)def forward(self, prefix: torch.Tensor):if self.prefix_projection:# Prefix Tuning# 先进行Embedding 此时shape为:(batch_size, num_virtual_tokens)# 再进行重新参数化编码,此时shape为:(batch_size, num_virtual_tokens, 2*layers*hidden)prefix_tokens = self.embedding(prefix)past_key_values = self.transform(prefix_tokens)else:# P-Tuning v2, 没有进行重参数化编码past_key_values = self.embedding(prefix)return past_key_values

P-Tuning V2具体做法基本同Prefix Tuning,可以看作是将文本生成的Prefix Tuning技术适配到NLU任务中,然后做了一些改进:

  • 1、移除重参数化的编码器。以前的方法利用重参数化功能来提高训练速度和鲁棒性(如:Prefix Tuning中的MLP、P-Tuning中的LSTM)。在作者发现重参数化的改进很小,尤其是对于较小的模型,同时还会影响模型的表现。
  • 2、针对不同任务采用不同的提示长度
    • 提示长度在提示优化方法的超参数搜索中起着核心作用。在实验中,作者发现不同的理解任务通常用不同的提示长度来实现其最佳性能。
    • 从图3中,可以观察到,针对简单任务:较短的Prompt(20)即可取得不错的效果。针对复杂任务:如阅读理解,需要更长的Prompt(100)。
    • 重参数化与最佳提示长度有密切关联。例如,在RTE、CoNLL04和BoolQ中,MLP重参数化比嵌入更早达到最佳结果。

在这里插入图片描述

  • 3、引入多任务学习(MPT-2)。先在多任务的Prompt上进行预训练,然后再适配下游任务。

2.2 论文部分实验

  • 对于简单的NLU任务,如SST-2(单句分类),Prompt Tuning和P-Tuning在较小的规模下没有显示出明显的劣势。但是当涉及到复杂的挑战时,如:自然语言推理(RTE)和多选题回答(BoolQ),它们的性能会非常差。
  • 相反,P-Tuning v2在较小规模的所有任务中都与微调的性能相匹配。并且,P-tuning v2在RTE中的表现明显优于微调,特别是在BERT中。

在这里插入图片描述

  • P-Tuning v2在一些困难的NLU任务中,作者选择了三个典型的序列标注任务(名称实体识别(NER)、抽取式问答(QA)和语义角色标签(SRL)),共八个数据集。作者发现P-Tuning v2在所有任务上都能与全量微调相媲美,下图只展示了NER任务的实验结果。

在这里插入图片描述

  • P-Tuning v2是一种在不同规模和任务中都可与微调相媲美的提示方法。P-Tuning v2对从330M到10B的模型显示出一致的改进,并在序列标注等困难的序列任务上以很大的幅度超过了Prompt Tuning和P-Tuning。

2.3 轻量微调bloom模型

我们只需要在加载原模型后、配置训练器前加peft的代码即可。

from peft import PrefixTuningConfig, get_peft_model, TaskType# 和Prefix Tuning不同的是设置prefix_projection=False
config = PrefixTuningConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=10, prefix_projection=False)model = get_peft_model(model, config)# 打印可训练参数信息
model.print_trainable_parameters()trainable params: 491,520 || all params: 346,260,480 || trainable%: 0.1419509382069822
  • 配置训练器、模型训练及推理和参数高效微调PEFT(一)快速入门BitFit、Prompt Tuning、Prefix Tuning中2.1一样。
  • 显存消耗情况:
(base) root@autodl-container-adbc11ae52-f2ebff02:~# nvidia-smi 
Tue May 28 15:18:39 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.89.02    Driver Version: 525.89.02    CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:B1:00.0 Off |                  N/A |
| 33%   56C    P2   189W / 250W |   2826MiB / 11264MiB |     45%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

这篇关于参数高效微调PEFT(二)快速入门P-Tuning、P-Tuning V2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013245

相关文章

乐鑫 Matter 技术体验日|快速落地 Matter 产品,引领智能家居生态新发展

随着 Matter 协议的推广和普及,智能家居行业正迎来新的发展机遇,众多厂商纷纷投身于 Matter 产品的研发与验证。然而,开发者普遍面临技术门槛高、认证流程繁琐、生产管理复杂等诸多挑战。  乐鑫信息科技 (688018.SH) 凭借深厚的研发实力与行业洞察力,推出了全面的 Matter 解决方案,包含基于乐鑫 SoC 的 Matter 硬件平台、基于开源 ESP-Matter SDK 的一

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

零基础STM32单片机编程入门(一)初识STM32单片机

文章目录 一.概要二.单片机型号命名规则三.STM32F103系统架构四.STM32F103C8T6单片机启动流程五.STM32F103C8T6单片机主要外设资源六.编程过程中芯片数据手册的作用1.单片机外设资源情况2.STM32单片机内部框图3.STM32单片机管脚图4.STM32单片机每个管脚可配功能5.单片机功耗数据6.FALSH编程时间,擦写次数7.I/O高低电平电压表格8.外设接口

ABAP怎么把传入的参数刷新到内表里面呢?

1.在执行相关的功能操作之前,优先执行这一段代码,把输入的数据更新入内表里面 DATA: lo_guid TYPE REF TO cl_gui_alv_grid.CALL FUNCTION 'GET_GLOBALS_FROM_SLVC_FULLSCR'IMPORTINGe_grid = lo_guid.CALL METHOD lo_guid->check_changed_data.CALL M

ps基础入门

1.基础      1.1新建文件      1.2创建指定形状      1.4移动工具          1.41移动画布中的任意元素          1.42移动画布          1.43修改画布大小          1.44修改图像大小      1.5框选工具      1.6矩形工具      1.7图层          1.71图层颜色修改          1

C++入门01

1、.h和.cpp 源文件 (.cpp)源文件是C++程序的实际实现代码文件,其中包含了具体的函数和类的定义、实现以及其他相关的代码。主要特点如下:实现代码: 源文件中包含了函数、类的具体实现代码,用于实现程序的功能。编译单元: 源文件通常是一个编译单元,即单独编译的基本单位。每个源文件都会经过编译器的处理,生成对应的目标文件。包含头文件: 源文件可以通过#include指令引入头文件,以使

LVGL快速入门笔记

目录 一、基础知识 1. 基础对象(lv_obj) 2. 基础对象的大小(size) 3. 基础对象的位置(position) 3.1 直接设置方式 3.2 参照父对象对齐 3.3 获取位置 4. 基础对象的盒子模型(border-box) 5. 基础对象的样式(styles) 5.1 样式的状态和部分 5.1.1 对象可以处于以下状态States的组合: 5.1.2 对象

C语言入门系列:探秘二级指针与多级指针的奇妙世界

文章目录 一,指针的回忆杀1,指针的概念2,指针的声明和赋值3,指针的使用3.1 直接给指针变量赋值3.2 通过*运算符读写指针指向的内存3.2.1 读3.2.2 写 二,二级指针详解1,定义2,示例说明3,二级指针与一级指针、普通变量的关系3.1,与一级指针的关系3.2,与普通变量的关系,示例说明 4,二级指针的常见用途5,二级指针扩展到多级指针 小结 C语言的学习之旅中,二级

Java面试八股之JVM参数-XX:+UseCompressedOops的作用

JVM参数-XX:+UseCompressedOops的作用 JVM参数-XX:+UseCompressedOops的作用是启用对象指针压缩(Ordinary Object Pointers compression)。这一特性主要应用于64位的Java虚拟机中,目的是为了减少内存使用。在传统的64位系统中,对象引用(即指针)通常占用8字节(64位),而大部分应用程序实际上并不需要如此大的地址空间

打造坚固的SSH防护网:端口敲门入门指南

欢迎来到我的博客,代码的世界里,每一行都是一个故事 🎏:你只管努力,剩下的交给时间 🏠 :小破站 打造坚固的SSH防护网:端口敲门入门指南 前言什么是端口敲门端口敲门的优点1. 增强安全性2. 动态防火墙规则3. 隐匿服务4. 改善日志管理5. 灵活性和兼容性6. 低资源消耗7. 防御暴力破解和扫描8. 便于合法用户访问9. 适用于不同类型的服务 端口敲