Numba 的 CUDA 示例(1/4):踏上并行之旅

2024-05-29 08:36

本文主要是介绍Numba 的 CUDA 示例(1/4):踏上并行之旅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

按照本系列从头开始使用 Python 学习 CUDA 编程

介绍

GPU(图形处理单元),顾名思义,最初是为计算机图形学开发的。从那时起,它们几乎在每个需要高计算吞吐量的领域都无处不在。这一进步得益于 GPGPU(通用 GPU)接口的发展,这些接口使我们能够对 GPU 进行编程以进行通用计算。这些接口中最常见的是CUDA,其次是OpenCL,最近的是 HIP。

img

Python 中的 CUDA

CUDA 最初设计为与 C 兼容。后来的版本将其扩展到 C++ 和 Fortran。在 Python 生态系统中,使用 CUDA 的方法之一是通过Numba,这是一个适用于 Python 的即时 (JIT) 编译器,可以针对 GPU(它也针对 CPU,但这超出了我们的范围)。使用 Numba,可以直接用 Python(一个子集)编写内核,Numba 将即时编译代码并运行它。虽然它没有实现完整的 CUDA API,但其支持的功能通常足以获得与 CPU 相比令人印象深刻的加速(有关所有缺失的功能,请参阅Numba 文档1)。

然而, Numba并不是唯一的选择。CuPy既提供依赖于 CUDA 的高级函数,也提供用于集成用 C 编写的内核的低级 CUDA 支持,以及可 JIT 的 Python 函数(类似于 Numba)。PyCUDA 提供了对 CUDA API 的更细粒度控制。最近,Nvidia 发布了官方CUDA Python,这必将丰富生态系统。所有这些项目都可以相互传递设备数组,你不必局限于只使用一个。

在本系列中

本系列的目标是通过用 Numba CUDA 编写的示例为常见的 CUDA 模式提供一个学习平台。本系列并不是 CUDA 或 Numba 的综合指南。读者可以参考它们各自的文档。本教程的结构受到Jason Sanders 和 Edward Kandrot 合著的[CUDA by Example: An Introduction to General-Purpose GPU Programming](https://developer.nvidia.com/cuda-example)一书的启发。如果你最终不再使用 Python 并想用 C 语言编写代码,那么这是一个极好的资源。

本系列还将会包含第 2 部分、第 3 部分和第 4 部分。

在本教程中,我们将学习如何运行我们的第一个 Numba CUDA 内核。我们还将学习如何有效地使用 CUDA 执行高度并行的任务,即完全相互独立的任务。最后,我们将学习如何从 CPU 计时内核的运行时间。因为我的电脑是 Mac,无法实现 CUDA,所以我在 Google Colab 上进行了实现,可以点击查看:https://colab.research.google.com/drive/1O5bhDHZgJqLwVaQl4rkoewY_XyO_krKQ?usp=sharing

GPU 并行编程简介

GPU 相对于 CPU 的最大优势在于它们能够并行执行相同的指令。单个 CPU 内核将以串行方式一个接一个地运行指令。在 CPU 上进行并行化需要同时使用其多个内核(物理或虚拟)。标准的现代计算机具有 4-8 个内核。另一方面,现代 GPU 拥有数百甚至数千个计算内核。参见图 1 以了解两者之间的比较。GPU 内核通常较慢并且只能执行简单指令,但它们的庞大数量通常可以弥补这些缺点。需要注意的是,为了使 GPU 比 CPU 更具优势,它们运行的算法必须是可并行的。

我认为理解 GPU 编程有四个主要方面。第一个我已经提到过:理解如何思考和设计本质上并行的算法。这可能很难,因为有些算法是串行设计的,也因为可以有多种并行化同一算法的方法。

第二个方面是学习如何将主机上的结构(例如矢量和图像)映射到 GPU 结构(例如线程和块)上。重复模式和辅助函数可以帮助我们实现这一点,但归根结底,实验对于充分利用 GPU 至关重要。

第三是理解驱动 GPU 编程的异步执行模型。不仅 GPU 和 CPU 彼此独立地执行指令,GPU 还具有允许多个处理流在同一 GPU 中运行的流。这种异步性在设计最佳处理流程时非常重要。

第四个也是最后一个方面是抽象概念和具体代码之间的关系:这是通过学习 API 及其细微差别来实现的。

当你阅读第一章时,请尝试在以下示例中识别这些概念!

图 1

图 1.1。简化的 CPU 架构(左)和 GPU 架构(右)。算术发生在 ALU(算术逻辑单元)中,DRAM 数据,缓存保存可以更快访问的数据,但通常容量较小。控制单元执行指令。来源:维基百科。

入门

我们将首先设置我们的环境:高于 0.55 的 Numba 版本和受支持的 GPU。

import numpy as np
import numba
from numba import cudaprint(np.__version__)
print(numba.__version__)---
1.25.2
0.59.1cuda.detect()---
Found 1 CUDA devices
id 0             b'Tesla T4'                              [SUPPORTED]Compute Capability: 7.5PCI Device ID: 4PCI Bus ID: 0UUID: GPU-0aa3c43c-1ada-6075-e57a-dccb0793a8b6Watchdog: DisabledFP32/FP64 Performance Ratio: 32
Summary:1/1 devices are supported
True

Numba CUDA 的主要工作是cuda.jit装饰器。它用于定义将在 GPU 中运行的函数。

我们首先定义一个简单的函数,该函数接受两个数字并将它们存储在第三个参数的第一个元素上。我们的第一课是内核(启动线程的 GPU 函数)不能返回值。我们通过传递输入输出来解决这个问题。这是 C 中的常见模式,但在 Python 中并不常见。

# Example 1.1: Add scalars
@cuda.jit
def add_scalars(a, b, c):c[0] = a + bdev_c = cuda.device_array((1,), np.float32)add_scalars[1, 1](2.0, 7.0, dev_c)c = dev_c.copy_to_host()
print(f"2.0 + 7.0 = {c[0]}")---
2.0 + 7.0 = 9.0

你可能已经注意到,在调用内核之前,我们需要在设备上分配一个数组。此外,如果我们想显示返回的值,我们需要将其复制回 CPU。你可能会问自己为什么我们选择分配一个float32(单精度浮点数)。这是因为,虽然大多数现代 GPU 都支持双精度运算,但双精度运算所需的时间可能是单精度运算的 4 倍或更长。因此,最好习惯使用np.float32andnp.complex64而不是float/np.float64complex/ np.complex128

虽然内核定义看起来类似于 CPU 函数,但内核调用略有不同。特别是,它在参数前有方括号:

add_scalars[1, 1](2.0, 7.0, dev_c)

这些方括号分别表示网格中的块数和块中的线程数。在学习使用 CUDA 进行并行化时,让我们进一步讨论一下这些含义。

使用 CUDA 进行并行化

CUDA 网格的剖析

启动内核时,它会有一个与之关联的网格。网格由块组成;块由线程组成。图 2 显示了一维 CUDA 网格。图中的网格有 4 个块。网格中的块数保存在一个特殊变量中,该变量可在内核内部访问,称为gridDim.x.x是指网格的第一维(在本例中是唯一的一维)。二维网格也有.y和三维网格.z变量。同样在内核内部,你可以通过使用 找出正在执行哪个块blockIdx.x,在本例中它将从 0 运行到 3。

每个块都有一定数量的线程,保存在变量中blockDim.x。线程索引保存在变量中threadIdx.x,在本例中从 0 到 7。

重要的是,不同块中的线程被安排以不同的方式运行,可以访问不同的内存区域,并且在某些方面也有所不同(请参阅CUDA 复习:CUDA 编程模型的简要讨论)。现在,我们将跳过这些细节。

图 2:一维 CUDA 网格

当我们在第一个示例中使用参数启动内核时[1, 1],我们告诉 CUDA 运行一个块和一个线程。传递多个块和多个线程将多次运行内核。操纵threadIdx.xblockIdx.x将使我们能够唯一地标识每个线程。

我们不再对两个数字求和,而是尝试对两个数组求和。假设每个数组有 20 个元素。如上图所示,我们可以启动一个内核,每个块有 8 个线程。如果我们希望每个线程只处理一个数组元素,那么我们将至少需要 4 个块。启动 4 个块,每个块有 8 个线程,我们的网格将启动 32 个线程。

现在我们需要弄清楚如何将线程索引映射到数组索引。threadIdx.x从 0 到 7 运行,因此它们本身无法索引我们的数组。此外,不同的块具有相同的threadIdx.x。另一方面,它们具有不同的blockIdx.x。要为每个线程获取唯一索引,我们可以组合这些变量:

i = threadIdx.x + blockDim.x * blockIdx.x

对于第一个块,blockIdx.x = 0i将从 0 运行到 7。对于第二个块,blockIdx.x = 1。由于blockDim.x = 8i将从 8 运行到 15。同样,对于blockIdx.x = 2i将从 16 运行到 23。在第四个也是最后一个块中,i将从 24 运行到 31。请参阅下表 1。

i01234567891011121314151631
threadIdx.x012345670123456707
blockIdx.x000000001111111123

我们解决了一个问题:如何将每个线程映射到数组中的每个元素……但现在我们遇到了一个问题,即某些线程会溢出数组,因为数组有 20 个元素,最多i可达 32-1。解决方案很简单:对于这些线程,不要执行任何操作!

我们来看看代码。

# Example 1.2: Add arrays
@cuda.jit
def add_array(a, b, c):i = cuda.threadIdx.x + cuda.blockDim.x * cuda.blockIdx.xif i < a.size:c[i] = a[i] + b[i]N = 20
a = np.arange(N, dtype=np.float32)
b = np.arange(N, dtype=np.float32)
dev_c = cuda.device_array_like(a)add_array[4, 8](a, b, dev_c)c = dev_c.copy_to_host()
print(c)---
[ 0.  2.  4.  6.  8. 10. 12. 14. 16. 18. 20. 22. 24. 26. 28. 30. 32. 34. 36. 38.]

在较新版本的 Numba 中,我们会收到一条警告,指出我们使用主机数组调用了内核。理想情况下,我们希望避免将数据从主机移动到设备,因为这非常慢。我们应该在所有参数中使用设备数组调用内核。我们可以通过预先将数组从主机移动到设备来实现这一点:

dev_a = cuda.to_device(a)
dev_b = cuda.to_device(b)

此外,每个线程的唯一索引的计算很快就会过时。值得庆幸的是,Numba 提供了非常简单的包装器cuda.grid,它以网格维度作为唯一参数来调用。新内核将如下所示:

# Example 1.3: Add arrays with cuda.grid
@cuda.jit
def add_array(a, b, c):i = cuda.grid(1)if i < a.size:c[i] = a[i] + b[i]add_array[4, 8](dev_a, dev_b, dev_c)c = dev_c.copy_to_host()
print(c)---
[ 0.  2.  4.  6.  8. 10. 12. 14. 16. 18. 20. 22. 24. 26. 28. 30. 32. 34. 36. 38.]

当我们改变数组的大小时会发生什么?一种简单的解决方法是简单地更改网格参数(块数和每个块的线程数),以便至少启动与数组中的元素一样多的线程。

设置这些参数既需要一定的科学性,也需要一定的艺术性。从“科学性”的角度来说,我们会说 (a) 它们应该是 2 的倍数,通常在 32 到 1024 之间,以及 (b) 应该选择它们以最大化占用率(同时有多少个线程处于活动状态)。Nvidia 提供了一个电子表格来帮助计算这些值。从“艺术性”的角度来说,没有什么可以预测内核的行为,因此如果你真的想优化这些参数,你需要使用典型输入来分析你的代码。实际上,现代 GPU 的“合理”线程数是 256。

N = 1_000_000
a = np.arange(N, dtype=np.float32)
b = np.arange(N, dtype=np.float32)dev_a = cuda.to_device(a)
dev_b = cuda.to_device(b)
dev_c = cuda.device_array_like(a)threads_per_block = 256
blocks_per_grid = (N + (threads_per_block - 1)) // threads_per_block
# Note that
#     blocks_per_grid == ceil(N / threads_per_block)
# ensures that blocks_per_grid * threads_per_block >= Nadd_array[blocks_per_grid, threads_per_block](dev_a, dev_b, dev_c)c = dev_c.copy_to_host()
np.allclose(a + b, c)---
True

在继续讨论向量求和之前,我们需要讨论一下硬件限制。GPU 无法运行任意数量的线程和块。通常,每个块不能有超过 1024 个线程,并且网格不能有超过 2¹⁶ − 1 = 65535 个块。这并不是说你可以启动 1024 × 65535 个线程……根据其寄存器占用的内存量以及其他考虑因素,可以启动的线程数量是有限制的。此外,必须谨慎尝试处理无法一次性放入 GPU RAM 的大型数组。在这些情况下,可以使用单个 GPU 或多个 GPU 分段处理数组。

信息:在 Python 中,可以通过 Nvidia 的 cuda-python 库,通过其文档中的函数 cuDeviceGetAttribute 获取硬件限制。有关示例,请参见本节末尾的附录。

网格跨步循环

如果每个网格的块数超出硬件限制,但数组适合内存,则我们可以使用一个线程来处理多个元素,而不是每个数组元素使用一个线程。我们将使用一种称为网格步长循环的技术来实现这一点。除了克服硬件限制之外,网格步长循环内核还可以通过重用线程来最大限度地减少线程创建/销毁开销。Mark Harris 的博客文章 CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops 详细介绍了网格步长循环的一些好处。

该技术背后的想法是在 CUDA 内核中添加一个循环来处理多个输入元素。顾名思义,此循环的步幅等于网格中的线程数。这样,如果网格中的线程总数 ( threads_per_grid = blockDim.x * gridDim.x) 小于数组元素的数量,则内核处理完索引后cuda.grid(1)就会处理索引cuda.grid(1) + threads_per_grid,依此类推,直到处理完所有数组元素。事不宜迟,让我们看看代码。

# Example 1.4: Add arrays with grid striding
@cuda.jit
def add_array_gs(a, b, c):i_start = cuda.grid(1)threads_per_grid = cuda.blockDim.x * cuda.gridDim.xfor i in range(i_start, a.size, threads_per_grid):c[i] = a[i] + b[i]threads_per_block = 256
blocks_per_grid_gs = 32 * 80  # Use 32 * multiple of streaming multiprocessors
# 32 * 80 * 256 < 1_000_000 so one thread will process more than one array elementadd_array_gs[blocks_per_grid_gs, threads_per_block](dev_a, dev_b, dev_c)
c = dev_c.copy_to_host()
np.allclose(a + b, c)---
True

这段代码与上面的代码非常相似,不同之处在于我们从 cuda.grid(1) 开始,但会执行更多的采样,每个threads_per_grid 执行一次,直到数组结束。

那么,哪一个内核更快呢?

计时 CUDA 内核

GPU 编程的核心在于速度。因此,准确测量代码执行情况非常重要。

CUDA 内核是主机 (CPU)启动的设备功能,但它们当然是在 GPU 上执行的。除非我们告诉它们,否则 GPU 和 CPU 不会进行通信。因此,当 GPU 内核启动时,CPU 将继续运行指令,无论是启动更多内核还是执行其他 CPU 功能。如果我们time.time()在内核启动之前和之后进行调用,我们将仅计时内核启动所需的时间*,而不是运行所需的*时间。

我们可以使用一个函数来确保 GPU 已经“赶上” 。cuda.synchronize(),调用此函数将停止主机执行任何其他代码,直到 GPU 完成已在其中启动的每个内核的执行。

要对内核执行进行计时,我们可以简单地计时内核运行然后同步所需的时间。这有两个注意事项。首先,我们需要使用time.perf_counter()time.perf_counter_ns()而不是time.time()time.time()不计算主机休眠等待 GPU 完成执行的时间。第二个注意事项是,从主机计时代码并不理想,因为这会产生相关开销。稍后,我们将解释如何使用 CUDA事件对来自设备的内核进行计时。Mark Harris 有另一篇关于此主题的精彩博客文章,标题为How to Implement Performance Metrics in CUDA C/C++

使用 Numba 时,我们必须注意一个细节。Numba 是一个即时编译器,这意味着函数只有在被调用时才会被编译。因此,对函数的第一次调用进行计时*也会对编译步骤进行计时,*而编译步骤通常要慢得多。我们必须记住始终先通过启动内核然后同步它来编译代码,以确保 GPU 中没有剩余的内容要运行。这可确保下一个内核无需编译即可立即运行。还要注意,数组的dtype应该相同,因为 Numba 为参数的每种组合编译一个唯一的函数dtypes

from time import perf_counter_ns# Compile and then clear GPU from tasks
add_array[blocks_per_grid, threads_per_block](dev_a, dev_b, dev_c)
cuda.synchronize()timing = np.empty(101)
for i in range(timing.size):tic = perf_counter_ns()add_array[blocks_per_grid, threads_per_block](dev_a, dev_b, dev_c)cuda.synchronize()toc = perf_counter_ns()timing[i] = toc - tic
timing *= 1e-3  # convert to μsprint(f"Elapsed time: {timing.mean():.0f} ± {timing.std():.0f} μs")---
Elapsed time: 131 ± 36 μs
# Compile and then clear GPU from tasks
add_array_gs[blocks_per_grid_gs, threads_per_block](dev_a, dev_b, dev_c)
cuda.synchronize()timing_gs = np.empty(101)
for i in range(timing_gs.size):tic = perf_counter_ns()add_array_gs[blocks_per_grid_gs, threads_per_block](dev_a, dev_b, dev_c)cuda.synchronize()toc = perf_counter_ns()timing_gs[i] = toc - tic
timing_gs *= 1e-3  # convert to μsprint(f"Elapsed time: {timing_gs.mean():.0f} ± {timing_gs.std():.0f} μs")---
Elapsed time: 140 ± 36 μs

对于简单内核,我们还可以测量算法的吞吐量,它等于每秒浮点运算次数。它通常以 GFLOP/s(每秒千兆 FLOP)为单位。我们的加法运算仅包含一个 FLOP:加法。因此,吞吐量由以下公式给出:

#              G * FLOP       / timing in s
gflops    = 1e-9 * dev_a.size * 1e6 / timing.mean()
gflops_gs = 1e-9 * dev_a.size * 1e6 / timing_gs.mean()print(f"GFLOP/s (algo 1): {gflops:.2f}")
print(f"GFLOP/s (algo 2): {gflops_gs:.2f}")---
GFLOP/s (algo 1): 7.65
GFLOP/s (algo 2): 7.15

2D 示例

为了结束本教程,让我们制作一个 2D 内核来对图像应用对数校正。

给定一个图像 I(x, y),其值介于 0 和 1 之间,对数校正图像由下式给出

Iᵪ(x, y) = γ log₂ (1 + I(x, y))

首先让我们获取一些数据!

import matplotlib.pyplot as plt
from skimage import datamoon = data.moon().astype(np.float32) / 255.fig, ax = plt.subplots()
im = ax.imshow(moon, cmap="gist_earth")
ax.set_xticks([])
ax.set_yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
fig.colorbar(im)
fig.tight_layout()

图 3。原始“月球”数据集

如你所见,数据在低端确实饱和了,几乎没有高于 0.6 的值。

让我们编写内核。

import math# Example 1.5: 2D kernel
@cuda.jit
def adjust_log(inp, gain, out):ix, iy = cuda.grid(2) # The first index is the fastest dimensionthreads_per_grid_x, threads_per_grid_y = cuda.gridsize(2) #  threads per grid dimensionn0, n1 = inp.shape # The last index is the fastest dimension# Stride each dimension independentlyfor i0 in range(iy, n0, threads_per_grid_y):for i1 in range(ix, n1, threads_per_grid_x):out[i0, i1] = gain * math.log2(1 + inp[i0, i1])threads_per_block_2d = (16, 16)  #  256 threads total
blocks_per_grid_2d = (64, 64)moon_gpu = cuda.to_device(moon)
moon_corr_gpu = cuda.device_array_like(moon_gpu)adjust_log[blocks_per_grid_2d, threads_per_block_2d](moon_gpu, 1.0, moon_corr_gpu)
moon_corr = moon_corr_gpu.copy_to_host()fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.imshow(moon, cmap="gist_earth")
ax2.imshow(moon_corr, cmap="gist_earth")
ax1.set(title="Original image")
ax2.set(title="Log-corrected image")
for ax in (ax1, ax2):ax.set_xticks([])ax.set_yticks([])ax.set_xticklabels([])ax.set_yticklabels([])
fig.tight_layout()

让我们注意一下这两个 for 循环。请注意,第一个 for 循环从 iy 开始,而最内层的第二个循环从 ix 开始。我们完全可以选择 i0ix 处开始,而 i1iy 处开始,这样会感觉更自然。那么,我们为什么要选择这种顺序呢?事实证明,第一种选择的内存访问模式更有效。由于第一个网格索引是最快的索引,我们希望它能与我们最快的维度(即最后一个维度)相匹配。

如果你不想相信我的话(你不应该相信!)你现在已经学会了如何对内核执行进行计时,你可以尝试这两个版本。对于像这里使用的数组这样的小数组,差异可以忽略不计,但对于较大的数组(例如 10,000 x 10,000),我测量到的速度提高了约 10%。虽然不是特别令人印象深刻,但如果我可以通过一次变量交换为你提供 10% 的改进,谁会不接受呢?

就这样!我们现在可以在校正后的图像中看到更多细节。

作为练习,尝试使用不同的网格对不同的启动进行计时,以找到适合你的机器的最佳网格大小。

图 4。原始(左)和对数校正(右)“月球”数据集

结论

在本教程中,你学习了 Numba CUDA 的基础知识。你学习了如何创建简单的 CUDA 内核,并将内存移至 GPU 以使用它们。你还学习了如何使用一种称为grid-stride loops 的技术迭代 1D 和 2D 数组。

附录:使用 Nvidia 的 cuda-python 探测设备属性

为了对 GPU 的精确属性进行细粒度控制,你可以依赖 Nvidia 提供的低级官方 CUDA Python 包。

# Need to: pip install --upgrade cuda-pythonfrom cuda.cuda import CUdevice_attribute, cuDeviceGetAttribute, cuDeviceGetName, cuInit# Initialize CUDA Driver API
(err,) = cuInit(0)# Get attributes
err, DEVICE_NAME = cuDeviceGetName(128, 0)
DEVICE_NAME = DEVICE_NAME.decode("ascii").replace("\x00", "")err, MAX_THREADS_PER_BLOCK = cuDeviceGetAttribute(CUdevice_attribute.CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, 0
)
err, MAX_BLOCK_DIM_X = cuDeviceGetAttribute(CUdevice_attribute.CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, 0
)
err, MAX_GRID_DIM_X = cuDeviceGetAttribute(CUdevice_attribute.CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, 0
)
err, SMs = cuDeviceGetAttribute(CUdevice_attribute.CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, 0
)print(f"Device Name: {DEVICE_NAME}")
print(f"Maximum number of multiprocessors: {SMs}")
print(f"Maximum number of threads per block: {MAX_THREADS_PER_BLOCK:10}")
print(f"Maximum number of blocks per grid:   {MAX_BLOCK_DIM_X:10}")
print(f"Maximum number of threads per grid:  {MAX_GRID_DIM_X:10}")---
Device Name: Tesla T4                                                                
Maximum number of multiprocessors: 40
Maximum number of threads per block:       1024
Maximum number of blocks per grid:         1024
Maximum number of threads per grid:  2147483647

  1. https://numba.readthedocs.io/en/stable/cuda/overview.html#missing-cuda-features ↩︎

这篇关于Numba 的 CUDA 示例(1/4):踏上并行之旅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013166

相关文章

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

spring @EventListener 事件与监听的示例详解

《spring@EventListener事件与监听的示例详解》本文介绍了自定义Spring事件和监听器的方法,包括如何发布事件、监听事件以及如何处理异步事件,通过示例代码和日志,展示了事件的顺序... 目录1、自定义Application Event2、自定义监听3、测试4、源代码5、其他5.1 顺序执行

Java之并行流(Parallel Stream)使用详解

《Java之并行流(ParallelStream)使用详解》Java并行流(ParallelStream)通过多线程并行处理集合数据,利用Fork/Join框架加速计算,适用于大规模数据集和计算密集... 目录Java并行流(Parallel Stream)1. 核心概念与原理2. 创建并行流的方式3. 适

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

Qt实现发送HTTP请求的示例详解

《Qt实现发送HTTP请求的示例详解》这篇文章主要为大家详细介绍了如何通过Qt实现发送HTTP请求,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、添加network模块2、包含改头文件3、创建网络访问管理器4、创建接口5、创建网络请求对象6、创建一个回复对

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错