[Algorithm][动态规划][子数组/子串问题][最大子数组和][环形子数组的最大和][乘积最大子数组][乘积为正数的最长子数组长度]详细讲解

本文主要是介绍[Algorithm][动态规划][子数组/子串问题][最大子数组和][环形子数组的最大和][乘积最大子数组][乘积为正数的最长子数组长度]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.最大子数组和
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.环形子数组的最大和
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 3.乘积最大子数组
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 4.乘积为正数的最长子数组长度
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


1.最大子数组和

1.题目链接

  • 最大子数组和

2.算法原理详解

  • 思路
    • 确定状态表示 -> dp[i]的含义

      • i位置元素为结尾的所有子数组中的最大和
        请添加图片描述
    • 推导状态转移方程

      • dp[i] = max(nums[i], dp[i - 1] + nums[i])
        请添加图片描述
    • 初始化:dp表多开一个虚拟结点,避免处理边界

      • dp[0] = 0
    • 确定填表顺序:从左往右

    • 确定返回值:整个dp表里的最大值


3.代码实现

int maxSubArray(vector<int>& nums) 
{int n = nums.size();vector<int> dp(n + 1);dp[0] = 0;int ret = INT_MIN;for(int i = 1; i <= n; i++){dp[i] = max(nums[i - 1], dp[i - 1] + nums[i - 1]);ret = max(ret, dp[i]);}return ret;
}

2.环形子数组的最大和

1.题目链接

  • 环形子数组的最大和

2.算法原理详解

  • 本题因为有环形数组,问题并不好处理,但是可以将问题转化为最大子数组和

    • 若最大子数组和出现在中间,则与最大子数组和解法无异
    • 若最大子数组和出现在两边,则可以将问题转化为找中间的最小子数组和
    • 两个情况合并,找其中的最大和即可
      请添加图片描述
  • 思路

    • 确定状态表示 -> dp[i]的含义

      • f[i]:以i位置元素为结尾的所有子数组中的最大和
      • g[i]:以i位置元素为结尾的所有子数组中的最小和
        请添加图片描述
    • 推导状态转移方程

      • f[i] = max(nums[i], f[i - 1] + nums[i])
      • g[i] = min(nums[i], g[i - 1] + nums[i])
        请添加图片描述
    • 初始化:dp表多开一个虚拟结点,避免处理边界

      • f[0] = g[0] = 0 -> 确保dp[0]的值,不会影响后面的求和
    • 确定填表顺序:从左往右

    • 确定返回值:sum == gmin ? fmax : max(fmax, sum - gmin)


3.代码实现

int maxSubarraySumCircular(vector<int>& nums) 
{int n = nums.size();vector<int> f(n + 1);vector<int> g(n + 1);int fmax = INT_MIN, gmin = INT_MAX, sum = 0;for(int i = 1; i <= n; i++){int x = nums[i - 1];sum += x;f[i] = max(x, x + f[i - 1]);fmax = max(fmax, f[i]);g[i] = min(x, x + g[i - 1]);gmin = min(gmin, g[i]);}return sum == gmin ? fmax : max(fmax, sum - gmin);
}

3.乘积最大子数组

1.题目链接

  • 乘积最大子数组

2.算法原理详解

  • 思路
    • 确定状态表示 -> dp[i]的含义

      • f[i]:以i位置元素为结尾的所有子数组中的最大乘积
      • g[i]:以i位置元素为结尾的所有子数组中的最小乘积
        请添加图片描述
    • 推导状态转移方程

      • f[i] = max(nums[i], f[i - 1] * nums[i], g[i - 1] * nums[i])
      • g[i] = min(nums[i], f[i - 1] * nums[i], g[i - 1] * nums[i])
        请添加图片描述
    • 初始化:dp表多开一个虚拟结点,避免处理边界

      • f[0] = g[0] = 1 -> 确保dp[0]的值,不会影响后面的乘积
    • 确定填表顺序:从左往右

    • 确定返回值:f表里的最大值


3.代码实现

int maxProduct(vector<int>& nums) 
{int n = nums.size();vector<int> f(n + 1), g(n + 1);f[0] = g[0] = 1;int ret = INT_MIN;for(int i = 1; i <= n; i++){f[i] = max(nums[i - 1], max(f[i - 1] * nums[i - 1], g[i - 1] * nums[i - 1]));g[i] = min(nums[i - 1], min(f[i - 1] * nums[i - 1], g[i - 1] * nums[i - 1]));ret = max(ret, f[i]);}return ret;
}

4.乘积为正数的最长子数组长度

1.题目链接

  • 乘积为正数的最长子数组长度

2.算法原理详解

  • 思路
    • 确定状态表示 -> dp[i]的含义

      • f[i]:以i位置元素为结尾的所有子数组中,乘积为正数的最长长度
      • g[i]:以i位置元素为结尾的所有子数组中,乘积为负数的最长长度
        请添加图片描述
    • 推导状态转移方程
      请添加图片描述

    • 初始化:dp表多开一个虚拟结点,避免处理边界

      • f[0] = g[0] = 0
    • 确定填表顺序:从左往右,两个表一起填

    • 确定返回值:f表里的最大值


3.代码实现

int getMaxLen(vector<int>& nums) 
{int n = nums.size();vector<int> f(n + 1), g(n + 1);int ret = INT_MIN;for(int i = 1; i <= n; i++){if(nums[i - 1] > 0){f[i] = f[i - 1] + 1;g[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1;}else if(nums[i - 1] < 0){f[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1;g[i] = f[i - 1] + 1;}ret = max(ret, f[i]);}return ret;
}

这篇关于[Algorithm][动态规划][子数组/子串问题][最大子数组和][环形子数组的最大和][乘积最大子数组][乘积为正数的最长子数组长度]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1012991

相关文章

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明